简介:针对多飞行器协同拦截机动目标过程中的目标状态估计问题,提出了一种多飞行器对目标加速度的一致性协同估计方法。构建了多飞行器分布式协同估计结构,将扩张状态观测器和一致性理论相结合,设计了分布式协同一致性估计器。利用扩张状态观测器对目标状态进行估计,在此基础上利用一致性理论为各飞行器设计协调控制量,通过局部信息交换使得各飞行器得到一致的估计值,实现对目标加速度的精确估计。利用稳定性判定理论对一致性估计器的误差和收敛性能进行了分析,并将设计的一致性协同估计方法应用到协同拦截系统中进行了仿真验证。仿真结果显示,在不同的目标机动形式下,对目标加速度估计误差始终小于0.5m/s2,因此设计的一致性估计方法能够实现对目标加速度的精确估计,且具有较强的鲁棒性。
简介:在Sage-Husa滤波基础上,提出了其改进的滤波算法,以解决它在容错性能差和高阶状态阵滤波发散等方面的问题.仿真结果表明,利用改进Sage-Husa滤波可有效提高GPS/INS组合制导的容错性能和精度.
简介:基于氢气的旋转爆轰发动机研究较多,而碳氢燃料与空气混合较为困难,导致基于乙烯的旋转爆轰发动机燃烧技术难度很高.使用宽视野范围的可视化燃烧室观察旋转爆轰波的研究在国内尚未开展.在同一燃烧室内进一步开展了乙烯或氢气的吸气式旋转爆轰实验,来流总温为283~284K,燃烧室壁面有140°石英玻璃观察窗,便于观察旋转爆轰波运动过程.空筒燃烧室爆轰环腔外径为100mm,轴向长度为151mm.燃料通过150个直径0.8mm圆柱孔进入燃烧室,空气通过喉部1mm宽的收敛扩张环缝流入环腔.高速摄影和低高频压力传感器均验证了旋转爆轰波的存在和速度值.以氢气为燃料的旋转爆轰波速度最高可达理论值的101%,爆轰波增压效应可达40%左右,乙烯旋转爆轰波速度可达理论值的89%.旋转爆轰波结构容易发生变化,不规则.氢气旋转爆轰的维持对燃烧室的结构要求比碳氢燃料要低,比乙烯旋转爆轰波更加稳定.
简介:为实现无人机高精度高可靠性导航,提出了一种以捷联惯性导航系统(SINS)为主,以地形辅助导航(TAN)、大气数据系统(ADS)及电子磁罗盘(MCP)为辅的组合导航方式。通过分析SINS、TAN、ADS及MCP单一系统的工作原理及输出误差模型,构建了SINS/TAN、SINS/ADS及SINS/MCP系统的状态方程及观测方程,最后采用联邦卡尔曼滤波方式实现了对各组合系统的信息融合。仿真数据对比表明:SINS/TAN系统位置误差较小,但航向误差较大;SINS/ADS系统速度误差较小且比较稳定,但位置误差随时间发散;SINS/MCP系统航向误差方差可达0.3783’,但其位置和速度估计精度不理想;而SINS/TAN/ADS/MCP系统能够克服上述不足,实现所有导航参数误差估计的高精度。
简介:开展了机器学习在翼型气动力计算和反设计方法中的应用研究,实现了在更大翼型空间范围内,人工神经网络的训练和优化,建立了翼型气动力计算模型,和给定目标压力分布的翼型反设计优化模型.作为机器学习领域兴起的研究热点,人工神经网络的研究工作不断深入,有研究者尝试将其应用于流体力学的学科范畴内.文章实现人工神经网络在翼型计算领域中应用的方法如下:首先通过Parsec参数化方法,围绕基准翼型构造了一定翼型空间范围的翼型库,利用XFOIL进行数值模拟,搭建了和翼型库具有一一映射关系的流场信息库.通过训练和优化神经网络,实现了基于此模型的快速、高可信度的翼型气动力预测,以及新型的翼型优化设计方法.通过自动化编程实现样本库的批量生成,实现了不同翼型空间的样本量下,神经网络的训练和优化过程.实验结果表明,在机器学习领域中,基于神经网络的翼型反设计模型的精确性高度依赖于训练样本量的大小和覆盖范围.
简介:在GPS/IMU组合导航系统中,由于GPS的校正作用,系统输出的导航数据存在周期的阶跃式跳变(典型的校正周期为1s),对于SAR成像运动补偿而言,这相当于引入了高频测量噪声,会严重影响雷达成像质量。为解决该问题,系统另外引入了一个捷联解算模块。为保证该模块输出的数据平滑且精度稳定,受跟踪随动控制系统的设计思想启发,从控制理论的角度对系统进行了数学建模,设计了捷联解算模块对组合导航系统的跟踪环路,给出了环路中关键模块“环路滤波器”的设计方法。该方案实现了在不影响系统测量带宽的情况下,组合导航系统对捷联解算模块的高频、连续、平滑校正。仿真及实验结果证明了该方案的有效性及可行性。
简介:针对舰载条件的捷联惯导粗对准问题,提出了一种简单可行的最优粗对准方法。根据双矢量定姿的原理,分别将两个观测矢量之一作为基准,通过两次三轴姿态测定算法得到两个姿态矩阵,然后根据观测矢量的方差特性加权得到精度最优的姿态阵。阐述了三轴姿态测定算法的基本原理,分析了最优三轴姿态测定算法与基于高斯马尔科夫估计的三轴姿态测定算法的统一性,解析了基于最优三轴姿态测定算法的舰载惯导系统粗对准方案,并对传统三轴姿态测定算法和最优三轴姿态测定算法进行了应用比较。蒙特卡洛50个样本的仿真结果表明,采用最优三轴姿态测定算法明显优于传统三轴姿态测定算法,可使得东向、北向和天向姿态误差角均值分别为4.78??,9.21?和0.29?,标准差分别为0.11?,0.07?和1.08?,水平失准角最大值9.37?,方位失准角最大值2.8?,能够有效确定出载体的粗略姿态,在此基础上能更好实现该状态下的舰载惯导精对准。
简介:为提高车载捷联惯性导航系统(SINS)的定位和姿态精度,分析了SINS静态罗经对准原理,并推广至行进过程中,借助里程仪测速辅助实现姿态动态、持续对准。同时,通过此动态罗经回路控制律对里程仪测速噪声进行平滑,并对平滑后速度加以检测,实现了零速修正(ZVU)的停车自动识别;停车瞬间利用动态罗经对准回路对系统姿态进行修正,速度误差归零,并依据相邻停车时刻记录的速度误差拟合曲线积分值修正系统位置误差。最后,采用此方案进行了长达4h(约160km)的三组跑车实验,每10min停车ZVU(1s),达到的定位精度为44.2m(CEP),姿态精度优于0.5’。