简介:本文旨在全面综述随机度量理论及其应用过去十年在我国发展过程中所获得的主要结果与思想方法。全文由十节组成,第一节对我们工作的背景-概率度量空间与随机度量空间理论和一简单的介绍;第二节给出某些有关随机泛函分析及取值于抽象空间的可测函数的预备知识;第三节阐明随机泛函分析与原始随机度量理论(本文称之为F-随机度量理论)的整体关系:主要结果是在随机元生成空间给出自然且合理的随机度量与随机范数的构造,从而将随机元与随机算子理论的研究纳入随机度量理论框架;主要思想是将随机泛函分析视为随机度量空间体系上的分析学而统一地发展,从而形成了发展随机泛函分析的一个新的途径-空间随机化途径;除此之外,在本节我们也从随机过程理论观点出发首次提出对应于随机度量理论原始版本的一种新的随机共轭空间理论(叫作F-随机共轭空间理论),它的突出优点是能保持象随机过程的样本性质这样更精细的特性(本节由作者的工作构成);在第四节,基本作者最近提出的随机度量理论的一个新的版本(本文称之为E-随机度量理论),从传统泛函分析的角度对过去已被发展起来的随机共轭空间理论(本文称之为E-随机共轭空间理论),从传统泛函分析的角度对过去已被发展起来的随机共轭空间理论(本文称之为E-随机共轭空间理论)的基本结果进行系统整理并给以全新的处理(本节内容整体上由作者最近后篇论文构成,也尤其提到朱林户等人的重要工作);在本节我们也相当的篇幅论述F-随机共轭空间理论与E-随机共轭空间理论的内存关系与本质差异。在下紧跟的两节,致力于E-随机共轭空间理论深层次的结果,尤其突出了E-随机赋范模与传统的赋范空间、E-随机共轭空间与经典
简介:基于Skyrme能量密度泛函结合扩展的Thomas-Fermi近似,研究了原子核的基态性质以及熔合体系的入射道势。另外对于熔合反应,由得到的入射道势构建了一个经验的势垒分布来描述其他自由度对两核相对运动自由度的耦合效应。基于该势垒分布以及势垒穿透思想,许多熔合反应的熔合激发函数能被很好地再现。
简介:目的:针对预张力索杆体系,将构件刚度与体系判定相结合,提出分布式静不定和分布式动不定的计算方法,使体系分析从“系统”层面向“构件”层面延伸。创新点:1.推导出具有广泛适应性的分布式静不定公式,并证明与原有方法的内在关系。2.首次提出分布式动不定数学公式。3.给出分布式不定数的物理意义及潜在的应用。方法:该方法在平衡矩阵理论基础上,采用奇异值分解法分别求解相互正交的两类单元变形量和两类节点外荷载模态;在排除整体刚体位移模态后,利用该正交性,求解分布式静不定和动不定。结论:1.该方法能克服已有方法中的奇异性问题,具有普遍性,可适用于动定及动不定结构。2.作为结构双对称性的代表,分布式静不定数可被用作一个简单而有效的分组准则;该准则能提高二次奇异值找力法(DSVD)的效率并能为设计师提供更多的初始预应力设计可能性。3.揭示分布式静不定与结构重要性及结构敏感性间的关系。4.分布式动不定数可被用作节点可动性的一个基本指标。
简介:Sargent改进的Powell方法是曲线拟合中的一种重要方法。本文利用这种方法针对蕴藻浜特大桥沉降中的实测数据给出了五种模型下的沉降预测,这些模型包括双曲线斜率倒数模型、VanderVeen指数模型、宇都一马指数模型、龚帕兹模型、以及波松曲线模型,并发现这种方法对波松旋回模型和灰色系统模型适用性不强。