简介:同学们,你知道“亲和数”吗?如果两个整数,其中每一个数的真因子的和都恰好等于另一个数,这两个数就构成一对“亲和数”.220与284是古希腊数学家、哲学家毕达哥拉斯最早提出来的一对亲和数,也是最小的一对亲和数.因为220的真因子是1、2、4、5、10、11、20、22、44、55、110,它们的和是284.284的真因子是1、2、4、71、142,其和恰为220.1636年,法国数学家费马发现了第二对亲和数17926与18416.两年后法国数学家笛卡尔给出了第三对亲和数.1747年,瑞士数学家欧拉一下子给出了30对,三年后他又把亲和数增加到了60对.令人不解的是,除去220与284之外最小的一对
简介:本文研究了有界相容不变性的问题.利用局部收敛的概念,给出了线性拓扑Tb的一些性质,由此获得了Banach-Mackey性质的若干新特征.
简介:复习目标了解命题的组成、互逆命题的概念以及反证法证明的基本步骤;了解轨迹的概念及五种基本轨迹,并能根据五种基本轨迹写出一些简单的轨迹;掌握教材所涉及的几种基本作图,能正确而熟练地进行尺规作图.