摘要
聚类分析在数据挖掘领域中占有重要地位,到目前为止学者们提出了许多的聚类算法.本文提出了一种基于kNN的聚类算法k-NearestNeighborCluster(kNNC).该算法首先找到每个数据点的k个邻居点,然后设置匹配点数n,通过使用每个点的邻居点进行匹配进而达到聚类效果.本文通过三个实验去验证该算法,并且与k-means算法进行比较.实验结果表明,该算法具有稳定的正确率,而其最大的优点是不需要预先设定聚类簇数,它可以大致的找到聚类的簇数.
出版日期
2016年08月18日(中国期刊网平台首次上网日期,不代表论文的发表时间)