轮动规律挖掘与自动化问题可视化研究严春雅

在线阅读 下载PDF 导出详情
摘要 摘要金融市场行业板块复杂多变的轮动现象,最终都表现为行业股价的周期现象,而我们通过从交易大数据中挖掘大概率的关联规则能够更加准确的辨析股市的轮动变化,帮助我们在未来的股市预测和决策中提供重要依据。本文运动多种数学模型和优化算法对命题进行剖析解决.问题中的市场板块划分问题是挖掘板块联动问题的重要前提,而不同角度的板块划分对不同的市场变化、行业轮换有较为适合的对应分析方法。长期稳定板块划分,我们通过使用Origin分析方法抓取符合条件的研究数据,然后根据各产业的增长率划分市场板块。板块内部分化度分析,我们抓取特高增长和高增长模块,对各部分进行Origin仿真,验证了增长率越高,市场分化程度越高,市场走势越紊乱,增长率越低,市场分化程度越低,市场走势越平稳的分化度变化规律。不同时间尺度的板块分析,我们应用机器学习--无监督学习之K-means聚类方法,演示出了板块在时间上的分合与演化。
出处 《电力设备》 2019年10期
出版日期 2019年10月20日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献