摘要
摘要目的构建基于卷积神经网络的儿童病毒性脑炎MRI分类与早期诊断模型,探讨其对儿童病毒性脑炎早期诊断、精准治疗和改善患儿预后的价值。材料与方法收集浙江大学医学院附属儿童医院2020至2022年期间颅脑MRI影像数据1077例,其中病毒性脑炎患儿577例,非病毒性脑炎儿童500例。运用卷积神经网络中的Squeeze-and-Excitation Residual Networks(SE-ResNet)模型构建儿童病毒性脑炎MRI分类与早期诊断模型并与Convolutional Block Attention Module Residual Networks(CBAM-ResNet)、Mobile Networks(MobileNet)、Residual Networks(ResNet)、Shuffle Networks(ShuffleNet)模型进行了对比。结果所有模型在训练集上都达到了收敛。SE-ResNet、CBAM-ResNet、MobileNet和ShuffleNet模型在训练集训练100轮后准确率都达到90%以上,而只有CBAM-ResNet模型和本研究选用的SE-ResNet模型在验证集上同样取得了90%以上的准确率。在测试集上,CBAM-ResNet具有最高的准确率73.91%,ResNet具有最高的召回率75.45%,但只有本文所用SE-ResNet模型在准确率和召回率都达到较高水平,并且取得最好的F1得分和曲线下面积(area under the curve, AUC)值:准确率为70.83%,召回率为72.73%,AUC为0.77,F1得分为0.7183。结论运用人工智能技术结合MRI实现儿童病毒性脑炎早期诊断是可行的,本研究为进一步实现全面的儿童脑炎早期诊断、精准治疗和改善脑炎患儿预后提供了理论和应用基础。
出版日期
2023年03月15日(中国期刊网平台首次上网日期,不代表论文的发表时间)