High efficient moving object extraction and classification in traffic video surveillance

在线阅读 下载PDF 导出详情
摘要 Movingobjectextractionandclassificationareimportantproblemsinautomatedvideosurveillancesystems.Abackgroundmodelbasedonregionsegmentationisproposed.AnadaptivesingleGaussianbackgroundmodelisusedinthestableregionwithgradualchanges,andanonparametricmodelisusedinthevariableregionwithjumpingchanges.Ageneralizedagglomerativeschemeisusedtomergethepixelsinthevariableregionandfillinthesmallinterspaces.Atwo-thresholdsequentialalgorithmicschemeisusedtogroupthebackgroundsamplesofthevariableregionintodistinctGaussiandistributionstoacceleratethekerneldensitycomputationspeedofthenonparametricmodel.Inthefeature-basedobjectclassificationphase,thesurveillancesceneisfirstpartitionedaccordingtotheroadboundariesofdifferenttrafficdirectionsandthenre-segmentedaccordingtotheirscenelocalities.Themethodimprovesthediscriminabilityofthefeaturesineachpartition.AdaBoostmethodisappliedtoevaluatetherelativeimportanceofthefeaturesineachpartitionrespectivelyanddistinguishwhetheranobjectisavehicle,asinglehuman,ahumangroup,orabike.Experimentalresultsshowthattheproposedmethodachieveshigherperformanceincomparisonwiththeexistingmethod.
机构地区 不详
出版日期 2009年04月14日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献