How Many 3D Structures Do We Need to Train a Predictor?

在线阅读 下载PDF 导出详情
摘要 Ithasbeenshownthattheprogressinthedeterminationofmembraneproteinstructuregrowsexponentially,withapproximatelythesamegrowthrateasthatofthewater-solubleproteins.Inordertoinvestigatetheeffectofthis,ontheperformanceofpredictionalgorithmsforbothα-helicalandβ-barrelmembraneproteins,weconductedaprospectivestudybasedonhistoricalrecords.WetrainedseparatehiddenMarkovmodelswithdifferentsizedtrainingsetsandevaluatedtheirperformanceontopologypredictionforthetwoclassesoftransmembraneproteins.Weshowthattheexistingtop-scoringalgorithmsforpredictingthetransmembranesegmentsofα-helicalmembraneproteinsperformslightlybetterthanthatofβ-barreloutermembraneproteinsinallmeasuresofaccuracy.Withthesamerationale,ameta-analysisoftheperformanceofthesecondarystructurepredictionalgorithmsindicatesthatexistingalgorithmictechniquescannotbefurtherimprovedbyjustaddingmorenon-homologoussequencestothetrainingsets.Theupperlimitforsecondarystructurepredictionisestimatedtobenomorethan70%and80%ofcorrectlypredictedresiduesforsinglesequencebasedmethodsandmultiplesequencebasedones,respectively.Therefore,weshouldconcentrateoureffortsonutilizingnewtechniquesforthedevelopmentofevenbetterscoringpredictors.
机构地区 不详
出版日期 2009年03月13日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献