简介:以贝叶斯方法为基础构建了信用评级和违约概率模型,指出金融机构利用已有评级信息提高债务人信用风险评估准确性的途径,并以单个债务人违约概率度量方法和Merton理论为基础,考虑异质性导致的宏观经济冲击对债务人的不同影响,度量资产组合违约风险。利用相关数据对贝叶斯模型应用给出例证,结果表明贝叶斯方法具有更为灵活的框架和较好的预测能力。
简介:在评估商业银行整体信用风险时,债务人的信息一般不会传递到风险管理部门,导致在缺少违约数据时传统方法的分析十分复杂甚至难以进行。基于贝叶斯方法的潜在因素模型可以有效解决无法获得特定债务人信用质量的问题,并能够在宏观经济环境变动时准确评估违约风险强度变化,从而避免低估风险。利用MCMC模拟方法对商业银行数据的实证分析表明,潜在因素模型不仅推断方法及模拟途径简洁清晰,估计结果更加精确,而且在贝叶斯框架下具有较强的灵活性,适合在不同的数据约束条件下应用,便于国内风险分析人员采用。
基于贝叶斯方法的信用评级模型构建与违约概率估计
潜在因素模型在商业银行信用风险分析中的应用