学科分类
/ 1
3 个结果
  • 简介:摘要图像引导放射治疗(IGRT)是一种可视化的影像引导放疗技术,具有提高肿瘤靶区剂量,降低正常器官受照剂量等诸多优点。锥形CT(CBCT)是IGRT中最常用的医学图像之一,对CBCT进行快速、准确的靶区及危及器官的分割对放疗具有重大意义。目前的研究方法主要有基于配准的分割方法和基于深度学习的分割方法。本研究针对CBCT图像分割方法、存在问题及发展方向进行综述。

  • 标签: 锥形束CT 图像分割 深度学习
  • 简介:摘要医学图像在临床诊断和治疗上起着至关重要的作用。放射治疗过程中采用计算机体层成像(CT)进行靶区定位和勾画。为了从多个角度获取病变体信息,需利用医学图像多模态的优势。然而,获取多种模态的医学图像是比较耗费资源的,同时无法保证患者状态的一致性。医学图像跨模态转换,可以利用一种模态图像预测另一种模态图像。本文详细综述了基于CT图像的超声图像、磁共振(magnetic resonance, MR)图像、正电子发射计算机断层显像(positron emission tomography, PET)跨模态模型研究,分类阐述了各模型的特点和存在的挑战,指出尚待开展的研究领域。

  • 标签: 声抗 跨模态转换 生成对抗网络
  • 简介:摘要随着医学图像合成任务复杂度的提高和对临床放疗精度的需求,深度学习算法在伪CT图像合成与分析中的角色越发重要。本文根据图像的模态种类对基于深度学习方法下的伪CT图像合成技术进行归类与分析,并介绍其在放疗应用中的最新进展。

  • 标签: 深度学习 伪CT 图像引导放疗