学科分类
/ 1
1 个结果
  • 简介:多因变量综合线性回归中变量筛选问题,一直受到学术界的高度关注。针对当前不少学者对多因变量综合线性回归中变量筛选问题的错误认识,尤其是"偏最小二乘回归模型"涉及数学过于深奥,很多学者不能理解其原理,不能适合采用该模型的条件而盲目使用。在利用线性代数中正定与半正定矩阵的性质和矩阵的特征理论的基础上,剖析三种常规线性回归建模方法的原理,揭示"偏最小二乘回归模型"的本性,并在肯定其优越性的同时也指出其应用上的局限性;提出实际应用中合理选择回归模型的若干标准,建立一种容易掌握操作简便且可替代OLS法的"超平面回归模型";利用一个实例对几种回归建模方法的应用效果进行比较和说明。

  • 标签: 最小二乘法 综合回归 超平面 拟合误差