简介:我国的TD-LTE蜂窝网络技术在无线通信技术的推动下有了很大的发展。但是有时候在应用这一技术的过程中会出现同频干扰的现象,需要对此给出具有针对性的解决方案。本文首先对TD-LTE蜂窝网络的同频干扰进行了评估,然后提出了对同频干扰的优化方案。
简介:摘要目的建立可预测Ⅱ~Ⅲ期胃癌患者淋巴结转移的神经网络模型,并探讨其预测价值。方法病例纳入标准:(1)经病理确诊为Ⅱ~Ⅲ期(第8版AJCC分期)胃腺癌;(2)术前胸片、腹部超声及上腹部CT等检查无肝、肺、腹腔等远处转移;(3)行R0切除。病例排除标准:(1)术前接受过新辅助化疗或放疗;(2)一般临床资料不完整;(3)残胃癌。回顾性收集2010年1月至2014年8月期间在福建医科大学附属协和医院胃外科接受根治性切除术的1 231例Ⅱ~Ⅲ期胃癌患者的临床病理资料。全组共1 035例患者经术后证实淋巴结转移,196例患者未出现淋巴结转移。416例(33.8%)术后病理分期为Ⅱ期,815例(66.2%)为Ⅲ期。全组患者被随机分为建模组861例(69.9%)和验证组370例(30.1%)。先运用Logistic单因素分析方法,对建模组的病例样本进行回顾性分析,筛查影响淋巴结转移的变量,确定人工神经网络输入节点的变量项目,再使用多层感知器(MLP)训练N+-ANN。N+-ANN由Logistic单因素分析筛选出的变量构成输入层。人工智能依据输入数据分析患者淋巴结转移状态,并与真实值进行比较。通过绘制受试者操作特性(ROC)曲线、获取曲线下面积(AUC)来评估模型的准确性。结果建模组与验证组临床资料的比较,差异均无统计学意义(均P>0.05)。建模组单因素分析结果显示,术前血小板淋巴细胞比值(PLR)、术前系统性免疫性炎性指数(SII)、肿瘤大小、临床N(cN)分期与患者出现淋巴结转移有关。将以上因素连同术前中性粒细胞淋巴细胞比值(NLR)、术前糖类抗原19-9、术前癌胚抗原、肿瘤位置、临床T(cT)分期作为输入层变量构建N+-ANN。建模组N+-ANN对术后淋巴转移预测准确率为88.4%(761/861),灵敏度为98.9%(717/725),特异度为32.4%(44/136),阳性预测值为88.6%(717/809),阴性预测值为84.6%(44/52),AUC值为0.748(95%CI:0.717~0.776);而验证组,N+-ANN的预测准确率为88.4%(327/370),模型灵敏度为99.7%(309/310),特异度为30.0%(18/60),阳性预测值为88.0%(309/351),阴性预测值为94.7%(18/19),AUC值为0.717(95%CI:0.668~0.763)。根据N+-ANN所输出的个体化淋巴结转移概率,取截点0~50%、>50%~75%、>75%~90%、>90%~100%,将患者分为N0组、N1组、N2组、N3组。建模组和验证组的N+-ANN对pN分期总体预测准确率分别为53.7%和54.1%,而cN分期对pN分期的总体预测准确率仅为30.1%和33.2%。结论本研究构建的N+-ANN能准确预测Ⅱ~Ⅲ期胃癌患者的淋巴结转移情况。基于N+-ANN的个体化淋巴结转移概率相较于cN分期,对pN分期预测的准确性更高。