简介:摘要目的针对CBCT图像中肿瘤与周围组织对比度低的缺点,研究一种适合于CBCT图像中中心型肺癌的自动分割方法。方法收集221例中心型肺癌患者,其中176例行CT定位,45例行强化CT定位。将强化CT图像分别设置为肺窗和纵隔窗,并与首次CBCT验证图像进行弹性配准获得配对数据集;然后将配对数据集传入cycleGAN网络进行风格迁移,使得CBCT图像可分别转化为肺窗和纵隔窗下的"强化CT";最后经风格迁移后的图像被载入UNET-attention网络对大体肿瘤体积进行深度学习。通过戴斯相似性系数(DSC)、豪斯多夫距离(HD)和受试者工作特征曲线下面积(AUC)对分割结果进行评价。结果经风格迁移后肿瘤与周围组织对比度明显增强,采用cycleGAN+UNET-attention网络的DSC值为0.78±0.05,HD值为9.22±3.42,AUC值为0.864。结论采用cycleGAN+UNET-attention网络可有效对CBCT图像中中心型肺癌进行自动分割。