简介:导子对研究算子代数的结构起着重要的作用.文中引入了零点广义Jordan可导映射的概念,并通过对文[1方法的应用得到了如下主要结果:在vonNeumann代数中,范数连续的零点广义Jordan可导映射是内导子与一固定元与恒等映射乘积的和,并得出在Hilbert空间上的全体有界线性算子上的零点广义Jordan可导映射也有同样的结论.
von Neumann代数上的零点广义Jordan可导映射