简介:摘要: 结合BP神经网络和灰色理论两种单项预测模型算法,实现对变压器油中溶解乙炔气体浓度精确预测。建立组合最优预测模型,根据预测误差平方和最小化的原则先计算各预测模型的权重,然后将各单项模型的权重进行加权综合计算。以变压器油中气体乙炔(C2H2)为例验证了该组合算法,不仅降低各单项预测算法的预报误差,也有效提高了预测模型的准确性能。
基于BP神经网络和灰色理论算法组合预测变压器油中乙炔气体浓度