简介:院网格发展的主要思想是有效的利用分布在世界各地的计算资源。而在网格环境下,是通过很多相互依赖的任务来描述作业的,这让工作流调度面临巨大的挑战。在本文中,提出了一个改进型的混沌遗传演算法来解决在工作流应用程序中的调度优化问题,它利用信息熵的概念动态调整了交叉和变异概率,优化了传统的遗传算法,并最终通过实验证明了算法的有效性。
基于信息熵的混沌遗传算法求解网格工作流调度问题