简介:摘要目的构建一种基于计算机视觉的结肠镜退镜速度实时监控系统,并验证其可行性和性能。方法从武汉大学人民医院消化内镜中心数据库选取2018年5—10月期间的35 938张肠镜图片和63个结肠镜检查视频。肠镜图片分成体外/体内/不合格和回盲部/非盲肠两个数据集,分别从第一个、第二个数据集中选取3 594张和2 000张图片用于深度学习模型的测试,其余图片用于训练模型;选取3个结肠镜检查视频资料评价实时监控系统自动监控退镜速度的可行性,剩余60个结肠镜检查视频资料用于评估实时监控系统的性能。结果深度学习模型对于结肠镜检查图片分类识别体外/体内/不合格图片的准确率分别为90.79%(897/988)、99.92%(1 300/1 301)、99.08%(1 293/1 305),总体准确率为97.11%(3 490/3 594);分类识别回盲部/非盲肠图片的准确率分别为96.70%(967/1 000)、94.90%(949/1 000),总体准确率为95.80%(1 916/2 000)。在其可行性评价方面,3个结肠镜视频资料显示退镜速度与图片处理间隔时间呈线性关系,提示该监控系统可在结肠镜退出过程中自动监控退镜速度。在其性能评价方面,结肠镜退镜速度实时监控系统正确预测了所有60个肠镜检查的开始时间和结束时间,分析显示结肠镜平均退镜速度和退镜时间呈明显负相关(R=-0.661,P<0.001),退镜时间不足5 min、5~6 min和超过6 min视频的平均退镜速度的95%置信区间分别为43.90~49.74、40.19~45.43和34.89~39.11,故将39.11设为安全退镜速度,将45.43设为预警退镜速度。结论构建的结肠镜退镜速度实时监控系统可用于实时监控结肠镜退镜速度,可在结肠镜检查中辅助内镜医师进行实时监测,以提高结肠镜检查质量。
简介:摘要随着人工智能技术的不断发展,其在医疗领域的应用越来越广泛,包括疾病诊断、治疗方案选择、判断预后等多方面。本文就人工智能技术在消化内镜领域中的应用,围绕辅助胃镜检查、结肠镜检查和胶囊内镜检查三个方面进行了详细介绍。
简介:摘要目的构建人工智能辅助诊断系统,自动发现胃溃疡病灶,鉴别胃良性溃疡与恶性溃疡。方法收集武汉大学人民医院消化内镜中心2016年11月—2019年4月拍摄的胃镜图片1 885张,其中正常胃黏膜图片636张、良性胃溃疡图片630张、恶性胃溃疡图片619张。其中1 735张为训练集,150张为测试集,分别将图片输入基于fastai框架的Res-net50模型、基于Keras框架的Res-net50模型和基于Keras框架的VGG-16模型进行训练。分别构建正常胃黏膜与良性溃疡、正常胃黏膜与恶性溃疡、良性与恶性溃疡3个单独的二元分类模型。结果VGG-16模型表现出了最好的结果,验证集验证模型区分正常黏膜与良性溃疡、正常黏膜与恶性溃疡、良性与恶性溃疡的精确度分别为98.0%、98.0%和85.0%。结论本研究获得的模型在发现溃疡病灶上具有较好的能力,有望应用于临床辅助溃疡病灶检出并鉴别良恶性溃疡。