学科分类
/ 1
5 个结果
  • 简介:非局部均值滤波是一种基于图像信息冗余的去噪方法,其认为图像自身的有效结构具有一定的重复性,而随机噪声则不具备这一特点,通过利用图像本身的自相似性来达到压制随机噪声的目的,是一种全局的去噪方法。本文把这一思想引入地震数据随机噪声压制中,针对传统非局部均值滤波计算量过大的问题,文章采用分块非局部均值的方式来减少计算量;针对滤波参数选取会影响非局部均值滤波效果的问题,提出一种简单的自适应滤波参数地震数据分块非局部均值算法。模型和实际数据处理结果表明:相对于传统的去噪算法(如f-x反褶积),该方法在压制随机噪声的同时对有效信号保护地更好,具有更高的保真度,更有利于后续的处理和解释工作。

  • 标签: 地震勘探 自适应 非局部均值 随机噪 声压制
  • 简介:描述和估计介质含水量、介电常数等属性参数分布是探地雷达探测技术的重要研究内容。雷达波的旅行时间和反射振幅系数与介质含水量、孔隙度与介电常数密切相关。常规通过旅行时间计算波速以估计介质参数的方法,例如透射波法,共中心点速度分析等,对于复杂介质分辨率有限。基于反射振幅的阻抗反演方法可以直接根据反射系数计算雷达波阻抗以估计介质属性参数,从而有效地避开常规方法在计算波速时精度低的问题。本文首先建立了基于高斯型和指数型混合自相关函数的三维多尺度等效随机介质模型刻画地下随机介质参数分布,并在局部加入高斯椭圆方程描述局部随机异常目标体。其次,通过引入锥形函数以降低随机介质模型在离散网格数值计算方法误差。在此基础上,推导了探地雷达递推阻抗反演的基本流程并结合随机介质模型测试了该方法在复杂介质参数估计中的计算精度。最后,对内蒙地区的实测探地雷达数据利用递推阻抗反演方法来估计地下污染物参数,估计介电常数、含水量结果与钻孔实测数据和同期开展的电阻率成像结果有很好的吻合。说明基于递推阻抗反演方法在探地雷达复杂介质属性参数估计中具有很好的应用前景。

  • 标签: 探地雷达 阻抗反演 随机介质模型 锥形函数
  • 简介:地震数据规则化是地震信号处理中一个重要步骤,近年来受到广泛关注的压缩感知技术已经被应用到地震数据规则化中。压缩感知技术突破了传统的Shannon-Nyqiust采样定理的限制,可以用采集的少量地震数据重构完整数据。基于压缩感知技术的地震数据规则化质量主要受三个因素影响,除了受地震信号在不同变换域的稀疏表达和11范数重构算法的影响外,极大地取决于地震道随机稀疏采样方式。尽管已有学者开展了2D地震数据离散均匀分布随机采样方式研究,但设计新的稀疏采样方案仍然很有必要。在本文中,我们提出满足Bernoulli分布规律的Bernoulli随机稀疏采样方式和它的抖动形式。对2D数值模拟数据进行四种随机稀疏采样方案和两种变换(Fourier变换和Curvelet变换)实验,对获取的不完整数据应用11范数谱投影梯度算法(SPGL1)进行重构。考虑到不同随机种子点产生不同约束矩阵R会有不同的规则化质量,对每种方案和每个稀疏采样因子进行10次规则化实验,并计算出相应信噪比(SNR)的平均值和标准偏差。实验结果表明,我们提出的新方案好于或等于已有的离散均匀分布采样方案。

  • 标签: 插值 稀疏采样 变换 重构 稀疏性
  • 简介:常规的时间一空间域和频率一空间域预测滤波方法假设地震记录由地震信号和随机噪声两部分构成,即所谓的加噪声模型,但是,在对随机噪声进行估算时,又假设随机噪声可以通过预测误差滤波器由地震记录中进行预测,即所谓的源噪声模型。这种前后不一致的噪声模型降低了该类方法的去噪能力和保幅性能。为此,本文提出了一种基于反演的时空域随机噪声衰减方法。它首先从地震数据中估算预测滤波算子,该算子表征了地震信号的可预测性,自适应地描述了地震信号的空间结构。在得到预测误差算子之后,将该算子作为正则化约束引入到地震信号反演系统,由含有随机噪声的地震数据直接反演地震信号。不同于常规随机噪声衰减方法,该方法将随机噪声衰减问题归结为正则化约束下的地震信号反演问题,克服了常规方法噪声模型的不一致性问题。我们采用模型数据和实际数据进行了实验分析,并与常规方法进行了效果对比。实验结果表明:与常规方法相比,本文方法在噪声压制的同时,没有对有效信号产生明显伤害,具有更好的振幅保持能力。

  • 标签: 噪声衰减 预测滤波 信号反演 正则化约束
  • 简介:传统的f-x域经验模态分解法(Empiricalmodedecomposition,EMD)能够有效地对主要由水平同相轴构成的地震记录进行随机噪声衰减。然而,当同相轴倾斜时,f-x域经验模态分解法在衰减随机噪声的同时去除大部分有效信号。本文提出了一种基于f-x域经验模态分解法的改进算法。我们通过局部相似度对所去除的噪声信号中的有效信号进行提取。局部相似度可以用来检测噪声信号中的有效信号点并用来构造一权重算子进行信号提取。新方法与f-x域经验模态分解法、f-x域预测滤波法以及f-x域经验模态分解预测滤波法相比能够在衰减随机噪声的同时保留更多的有用信号。数值模拟实验以及实际地震资料处理结果均表明该方法能更为有效地去噪。

  • 标签: 随机噪声衰减 f-x域经验模态分解 局部相似度权重算子 倾斜同相轴