简介:提出了一种基于压缩感知(CS,compressivesensing)的SAR对多舰船目标的成像算法。通过将多舰船目标成像转换为在某种基下具有稀疏表示的信号重建问题,从而满足CS理论对信号恢复重构的要求,获得比传统成像方法更高的方位分辨率。实测数据的处理验证了该算法的有效性。
简介:对无线传感器网络(WSNs)弱稀疏性事件检测问题进行研究,提出了一种基于并行离散群居蜘蛛优化算法和压缩感知的WSNs稀疏事件检测方案。该方案采用压缩感知(CS)技术进行稀疏事件分析检测,针对事件向量稀疏度未知的特性,设计基于MPI框架的并行离散群居蜘蛛优化算法(PDSSO),重新定义蜘蛛编码方式和自适应迭代进化机制,给出并行转移策略,并将PDSSO应用于CS重构算法中;针对观测字典难以满足约束等距条件的特点,对稀疏矩阵和测量矩阵进行奇异值预处理操作,在保持稀疏度不变的基础上提高了算法重构性能。仿真结果表明,与GMP等检测方法相比,该方案有效提高了WSNs稀疏事件检测成功率,降低了误检率和漏检率。