简介:为满足风机运营商对设备故障实时监控和预测的需求,探讨了基于自回归积分滑动平均模型(ARIMA)和非线性自回归神经网络模型(NARNN)的组合模型NARIMA。实现方法为:建立ARIMA模型用于预测数据的线性成分,用NARNN模型预测由ARIMA模型预测产生的残差部分,对风机叶片结冰故障的时间序列进行拟合,得到的NARIMA模型可实现对风机叶片结冰故障准确预测。仿真结果表明:NARIMA模型能较好地拟合所给时间序列,预测值符合实际情况和趋势,证明了NARIMA模型的有效性。
简介:随着企业内部的各种软件系统的逐步完善,企业在实现各种软件系统的数据集成上的需求也越来越迫切。针对目前主流的企业协作平台——LotusDomino/Notes和数据库系统的数据集成的方法进行了探索,并提出了相应的解决方案。
简介:超短期风速预测对风电场功率预报系统的建立和运行至关重要。针对具有较大随机波动性的风速预测,研究了一种基于误差修正的极端学习机(ELM)超短期风速预测方法。利用ELM模型对风速进行初步预测,并利用由此得到的误差数据样本建立差分自回归滑动平均模型(ARIMA),进行误差预测,最后使用预测误差对风速的初步预测值进行补正,从而求得最终预测值。仿真实验结果表明,该方法在风速超短期预测中的可行性及有效性。