简介:由于南水北调中线干线工程规模巨大、输水线路超长、战略地位重要,环境复杂,利用先进的传感器网络技术对南水北调中线干线工程进行立体全天候实时安全防护至关重要。南水北调工程安全传感器网络的服务包括:分析、决策与控制,为了实现这些服务,实现人与物、物与物的智慧对话,在数据层面,必须对数据进行智能处理和分析。因此,针对南水北调中线干线工程应用的多类型传感器开展压缩感知、数据预处理技术等研究以减少系统数据冗余,通过目标检测、协同融合等关键技术研究对异常情况进行识别与分类,并基于已有数据基础建立入侵异常模式数据库。
简介:数据同化方法可提高数值预报的时效性和准确性,且该方法已在水文领域得到应用,并得到快速发展。为了提高新安江模型径流模拟预报精度,采用集合卡尔曼滤波方法同化径流数据,对参数和状态变量进行同步校正估计。通过对三水源新安江模型进行理想条件下的数值实验,在同时考虑模型自身、模型参数以及观测数据的不确定性的情况下,分析了参数均值和方差改变、集合大小、同化参数的敏感性以及相关性分析对同化过程的影响。结果表明:集合卡尔曼滤波算法具有可行性,且参数均值越接近真值、方差适当增加,集合大小适中,同化参数敏感性较低以及参数与变量间相互独立时,能在一定程度上增加径流同化精度。该研究可为同类型参数同化估计提供一定参考依据。