学科分类
/ 1
4 个结果
  • 简介:提出了一种基于时间序列的大坝预测方法。首先对最近若干年的大坝位移变形时间序列进行周期项和趋势项的分析;然后对除去这两项的剩余时间序列进行混沌特性分析与预测;最后对三进行叠加,进行可行性分析与误差分析,得到预测结果。此方法实用性强,具有较高的操作性。

  • 标签: 大坝 时间序列 位移 混沌
  • 简介:针对由于非线性小样本河川年径流量预测难度较大的问题,可采用时间序列法的分段预测机制,为了消除预测模型选择的的误差,须考虑样本数据发生的概率因素考虑,鉴于此,基于数据量多少的原则可对概率进行量化,提出一种数量概率量化的方法,结合时间序列,进而可建立一种河川年径流量的预测方法,时间序列选用一次或二次函数相结合的分段模型。为了验证方法,基于开都河年径流量数据,作出考虑和不考虑数量概率量化两种方法的对比结果,结果表明考虑概率的预测准确性有较大提高,并基于其对该河未来数年的年径流量进行了预测。

  • 标签: 时间序列 年径流量 概率 数量 一次函数 开都河
  • 简介:为了解济南市未来降雨的变化情况,以济南市1959~2015年降雨量数据为研究对象运用SPSS软件中时间序列模型ARIMA对其进行了建模;拟合1959~2015年的降雨量数据及预测未来5年的降雨量。ARIMA模型预测结果表明了济南市2016~2020年的年降雨量依次为676.5,635.5,689.8,630.7,663.3mm,5年的年平均降雨量为659.2mm,这与过去57年的多年平均降雨量较为接近,可以依此推测济南市未来5年出现干旱及洪涝灾害的可能性较小。可以看出,影响ARIMA模型预测结果的因素有很多,为了更加精准地预测降雨量,应当考虑多种要素并结合当地具体环境,建立符合当地的降水量预测模型。

  • 标签: 时间序列模型 ARIMA模型 预测 降雨量 SPSS
  • 简介:对非线性预处理在人工神经网络日径流预测中的适应过程进行了仿真和模拟.提出了非线性预处理(NLP)适用条件的解算思路,通过实测数据和模拟数据,研究了NLP的适用条件。推导出NLP在神经网络SISO系统中适合于日径流预测,不适用于周平均流量序列、旬平均流量序列和月平均流量序列的预测,提出了判断NLP神经网络SISO系统进行日径流预测的有效性标准——多年日径流拐点14百分位.并通过广西平乐水文站和四川宝珠寺水文站1973~2001年的日径流量进行对比预测,验证了该标准是合理的。

  • 标签: 水文预测 非线性预处理 适用条件 神经网络