简介:多因变量综合线性回归中变量筛选问题,一直受到学术界的高度关注。针对当前不少学者对多因变量综合线性回归中变量筛选问题的错误认识,尤其是"偏最小二乘回归模型"涉及数学过于深奥,很多学者不能理解其原理,不能适合采用该模型的条件而盲目使用。在利用线性代数中正定与半正定矩阵的性质和矩阵的特征理论的基础上,剖析三种常规线性回归建模方法的原理,揭示"偏最小二乘回归模型"的本性,并在肯定其优越性的同时也指出其应用上的局限性;提出实际应用中合理选择回归模型的若干标准,建立一种容易掌握操作简便且可替代OLS法的"超平面回归模型";利用一个实例对几种回归建模方法的应用效果进行比较和说明。
简介:对两水平模型与静态面板数据模型进行对比分析:多水平模型主要用于分析具有层次结构的统计数据,面板数据模型是针对面板数据而提出的一种应用广泛的计量经济模型。面板数据可以看成是具有截面水平与时间水平的两层数据,两水平模型也能对面板数据进行分析,在一定条件下具有一定的相似性。因此,提出多水平的静态面板数据模型,为分析具有多个层次结构的面板数据提供分析工具。
简介:基于期货价格变化趋势的可预测性,利用判别分析中的Fisher多类判别模型,运用MATLAB程序语言编程,对期货交易中三月铜的数据进行分析,得到了判别函数,给出了预测判别准则,进一步讨论了其在期货价格预测中的应用。