简介:将Lasso算法和logistic回归模型相结合并且引入P2P个人网络信贷评估体系,通过模拟实验的结果发现,在全变量logistic模型、Lasso-logistic模型、Ridge-logistic模型中,Lasso-logistic模型对于变量的压缩效果要更好,有助于简化模型;虽然三个模型在进行预测的结果上并没有显著的差异,但是Lasso-logistic模型在计算效率上更胜一筹,在处理大量数据的情况下更有效率。
简介:如何在对参数进行估计的同时自动选择重要解释变量,一直是面板数据分位回归模型中讨论的热点问题之一。通过构造一种含多重随机效应的贝叶斯分层分位回归模型,在假定固定效应系数先验服从一种新的条件Laplace分布的基础上,给出了模型参数估计的Gibbs抽样算法。考虑到不同重要程度的解释变量权重系数压缩程度应该不同,所构造的先验信息具有自适应性的特点,能够准确地对模型中重要解释变量进行自动选取,且设计的切片Gibbs抽样算法能够快速有效地解决模型中各个参数的后验均值估计问题。模拟结果显示,新方法在参数估计精确度和变量选择准确度上均优于现有文献的常用方法。通过对中国各地区多个宏观经济指标的面板数据进行建模分析,演示了新方法估计参数与挑选变量的能力。
简介:平均单一依赖估计算法(averagedone-dependenceestimators,AODE)是通过放松朴素贝叶斯算法的假设条件得到的一种更加高效的分类算法,但AODE算法将所有父属性对分类的贡献程度看成是一样的,这使得AODE算法的分类效果受到限制。针对这个问题,利用相关系数Tau-y和Lambda-y分别计算各个特征属性对分类的贡献程度,并用计算结果对父属性加权,得到了两个改进的AODE算法:T-AODE和L-AODE算法。然后,利用加利福尼亚大学的埃文斯(UniversityofCaliforniaIrvine,UCI)标准数据集在Eclipse上对这两个算法进行分类实验,结果显示两个改进的AODE算法的精确度要优于原始AODE算法。