学科分类
/ 1
1 个结果
  • 简介:摘要:截至2020年底,并网风电装机容量28153万千瓦,增长34.6%,占全国电源总装机容量的12.8%。在高速发展的背后却隐藏着急需解决的安全隐患,而风电机组漏油就是其中最为严重的问题,轻则污染机舱环境、重则引起整个机组火灾,及倾斜与倒塌。因为油具有难以挥发性及粘性的物理特性,通过传感器的方式进行检测,不能复位并实现持续检测。只有通过机器视觉即视频技术手段才能实现非接触式可持续检测,因为机舱内具有相对均衡的光线环境,相对恒定的测量距离,相对静止的参照背景等三个有利条件,通过卷积神经网络深度学习方法,对舟山二十台风电机组几十万张现场照片进行训练,并通过高性能人工神经元网络单元(NPU)进行运算,形成了产品化解决方案并成功应用到项目中。

  • 标签: 卷积神经网络 深度学习 机器视觉 非接触式 可复位 漏油检测 风力发电