简介:随着计算机处理能力的快速提高,彩色图像处理受到人们越来越多的关注。针对现有纹理识别算法计算速度慢,识别精度低等问题,本文提出了一种将颜色信息融人到纹理识别中的新方法——基于小波概率神经网络的彩色纹理识别。首先将RGB彩色纹理图像转化为HSV彩色模型,用小波变换(wT)进行树形结构小波分解提取彩色纹理的特征,然后使用概率神经网络对测试样本进行分类识别。本文对不同的自然纹理图像进行了实验,并将实验结果与文献”0做了比较。实验结果证明,本文方法的识别效果明显优于文献。
简介:摘 要 航材保障面临着库存积压、库存结构不合理等问题,严重影响了航材保障质量效益。其中原因之一,就是航材消耗规律把握不够准确,在一定程度上影响了航材订货决策的科学性。因此,本文将尝试根据航材的消耗规律运用BP神经网络预测方法建立模型,并通过实例计算预测,验证所建立模型的准确度,对预测结果进行分析评价航材。
简介:目的:面对我国人参价格涨跌频繁的现状,基于历史价格数据探索一种人参价格预测方法,进而有预见性的指导人参的种植、经营,防范伤农、伤商事件的发生。方法:以生晒55支规格的人参为代表,选取2012年6月至2018年5月的历史价格为实验数据,以2012年6月至2017年8月的价格为训练集,以2017年9月到2018年5月的价格为验证数据集,分别基于BP神经网络与ARIMA方法,构建人参(生晒55支规格)的价格预测模型,并将二者的预测效果进行比较。结果:ARIMA模型在平稳期的预测较为精确,BP神经网络能应对价格的突变预测。结论:BP神经网络预测模型整体优于ARIMA模型,进一步证实了BP神经网络用于价格预测的优越性。
简介:摘要:本文主要针对高等教育问题进行了相关研究,利用BP神经网络以分数评价国家高等教育系统的健康状况。首先收集了多个国家教育影响因素的数据,选择出“国家人均GDP”、“国家高校升学率”等八个指标初步建立简单的指标体系。其次对八个国家进行模型应用,对模型进行进一步的优化,对其提出优化后的合理蓝图。最后建立时间序列的BP神经网络预测模型,预测出原状态下2020年中国评分从而得知此模型稳定性较好。
简介:在传统神经网络的基础上,引入小波函数而构成的小波神经网络具有极强的函数映射能力,在图像压缩领域有着较多应用.为了进一步提高图像的压缩质量,引入了遗传算法对传统小波神经网络算法进行改进,在对小波基平移和伸缩参数系数进行寻优时,将其作为种群初始化,经过选择、交叉和变异,获得最佳染色体,最后将最佳染色体转化成对应的权值、伸缩系数和平移系数从而进行小波神经网络映射.实验结果表明,改进后的小波神经网络图像压缩方法相较传统小波神经网络法,均方误差分别降低了14.8%和16.7%,图像信噪比分别提高了9.15%和7.11%,图像压缩质量有了较大提高.
简介:讨论了一类递归神经网络算法的稳定性问题。给出了增广的Lyapunov-Krasovskii泛函,考虑了更多激活函数的信息。在Lyapunov-Krasovskii导函数中引入了自由权矩阵,降低了保守性,同时结合凸组合理论,处理了时变时滞,得到了以线性矩阵不等式形式的稳定性判定准则,此判定准则易于验证和推广。数值例子和仿真验证了文中方法的可行性。