简介:假设S(X)是Banach空间X的单位球面,作者引进了四个新的几何参数:Jε(X)=sup{βε(x),x∈S(X)},jε(X)=inf{βε(x),x∈S(X)},Gε(X)=sup{αε(x),x∈S(X)},gε(X)=inf{αε(x),x∈S(S)},其中≤ε≤1,βε(x)=sup{min{‖x+εy‖,‖x-εy‖,y∈S(X)}},αε(x)=inf{max{‖x+εy‖,‖x-εy‖,y∈S(X)}},讨论了这些参数的性质,本文主要结果是:如果主要结果是:如果有一个ε,0≤ε≤1,使得Jε(X)<1+ε/2或gε(X)>1+ε/3,那末X有一至正规结构。
简介:AgraphGiscalledchromatic-choosableifitschoicenumberisequaltoitschromaticnumber,namelych(G)=χ(G).Ohba’sconjecturestatesthateverygraphGwith2χ(G)+1orfewerverticesischromaticchoosable.ItisclearthatOhba’sconjectureistrueifandonlyifitistrueforcompletemultipartitegraphs.Recently,Kostochka,StiebitzandWoodallshowedthatOhba’sconjectureholdsforcompletemultipartitegraphswithpartitesizeatmostfive.Butthecompletemultipartitegraphswithnorestrictionontheirpartitesize,forwhichOhba’sconjecturehasbeenverifiedarenothingmorethanthegraphsKt+3,2*(k-t-1),1*tbyEnotomoetal.,andKt+2,3,2*(k-t-2),1*tfort≤4byShenetal..Inthispaper,usingtheconceptoff-choosable(orL0-size-choosable)ofgraphs,weshowthatOhba’sconjectureisalsotrueforthegraphsKt+2,3,2*(k-t-2),1*twhent≥5.Thus,Ohba’sconjectureistrueforgraphsKt+2,3,2*(k-t-2),1*tforallintegerst≥1.
简介:<正>Foranoddfunctionf(x)definedonlyonafiniteinterval,thispaperdealswiththeexistenceofperiodicsolutionsandthenumberofsimpleperiodicsolutionsofthedifferentialdelayequation(DDE)(?)(t)=-f(x(t-1)).Byuseofthemethodofqualitativeanalysiscombinedwiththeconstructingofspecialsolutionsaseriesofinterestingresultsareobtainedontheseproblems.
简介:UsingthemethodofGirsanovtransformation,weestablishtheTalagrand'sT2-inequalityfordiffusiononthepathspaceC([0,N],R^d)withrespecttoauniformmetric,withtheconstantindependentofN.ThisimprovestheknownresultsfortheL2-metric.
简介:Inthispaper,weobtainaresultthatimprovestheresultsofGovilandNwaeze,QaziandtheclassicalresultofRivlin.
简介:本文旨在给出Banach空间值Hardy—Lorentz鞅空间的共轭空间的完全刻画.首先,对B值鞅引入了一类新的广义Lipschitz鞅空间及“原子鞅”的概念;其次,对B值Hardy-Lorentz鞅空间建立了“原子鞅”的分解定理;最后,以此为工具证明了其共轭空间是广义Lipschitz鞅空间.所得结论将已有的相应结果由实值鞅推广到Banach空间值鞅的情况.
简介:研究D-Cchang等人引进的五个区域Hardy空间,刻划这些空间的原子分解和对偶空间,揭示了这些空间的内在联系。