简介:提出两类联系函数,它们是阿基米德联系函数与Fréchet-Hoeffding界的融合,是正序簇.一类介于Fréchet-Hoeffding下界与一个特殊的联系函数之间;另一类介于Fréchet-Hoeffdingshang上界与一个特殊的联系函数之间.本文最后提出几个有待解决的问题.
简介:本文研究两类稳定性定理.对LaSalle不变原理做更加合理的改进.研究了Lyapunov直接法,得到了改进的比较原理,并加以证明,最后应用到实例中.
简介:在本文中,我们利用优级水清给出Jabotinsky方程(J2)和(J3)解析解存在的一些充分条件。
简介:通过计算两个广义的范德蒙(Vandermonde)行列式,得到了第一类无符号Stirling数和第二类Stifling数的一种新的表示方法:用行列式来表示.
简介:通过引入两个函数,讨论了它们的凸性和单调性,由此得到下凸函数的Hadamard不等式的改进,推广了有关文献的结果.又根据GA一下凸函数与下凸函数的关系,得到GA一凸函数的Hadamard不等式的改进与推广.
简介:考虑第一个边界条件为参数的线性函数,第二个边界条件为有理函数的Sturm-Liouville问题.给出问题的特征值、特征函数的渐近式以及特征函数的振荡理论,并给出相应的应用实例.