简介:一、填空(1~5小题各3分,6~8小题各4分,9、10小题各5分,共37分)1.按角分类,三角形可分为、和.2.△ABC的边AB=6cm,AC=4cm,则第三边BC的范围是<BC<.图A-13.如图A-1,CD是△ABC的角平分线,AB=AC.若∠A=50°,则∠1=.4.在△ABC中,∠C=90°,AB=13cm,AC=5cm,则BC=cm.图A-25.如图A-2,已知线段AB,用尺规作AB的垂直平分线.(保留作图痕迹)6.等腰三角形的一个顶角比底角小30°,则它与顶角相邻的外角等于.7.如图A-3,在△ABC中,∠C=90°,AC=15cm,AB=25cm,点D是BC中点,则AD=cm.图
简介:一、填空(1~5小题各3分,6~8小题各4分,9、10小题各5分,共37分)1.三角形的内角和是,一个外角等于的两个内角的和.2.等腰三角形的周长是40cm,腰是底的2倍,则底边长cm.3.△ABC的三个内角满足∠C=∠A-∠B,则△ABC是三角形.4.如图A-14,∠A+∠B+∠C+∠D+∠E+∠F=.图A-14图A-155.如图A-15,AD是等腰Rt△ABC的角平分线,DE⊥AB于E.若CD=5cm,则BE=cm.6.等腰三角形的底角等于15°,腰的长20cm,则腰上的高是cm.7.等边三角形的边长是4cm,则它的面积是cm2.8.如图A-16,△ABC中,AB=AC,∠A=30°,BD
简介:一、填空(每空2分,共30分)(1)在△ABC中:∠C=90°,a=12,b=9,则sinA=,ctgA=.(2)在△ABC中,∠C=90°,sinA=45,AB=10,那么BC=,cosB=.(3)已知cos54°36′=0.5793,查表求得同一行中它的修正值是5,则cos54°34′=.(4)用“<”号连结下列各数:sin30°,tg45°,ctg90°,cos45°,ctg60°,cos30°:.(5)化简:(sin60°-1)2+|1+cos30°|=.(6)在△ABC中,∠B是锐角,sinB=22,则∠B=.(7)在Rt△ABC中,∠C=90°,sin(90°-A)=34,则cos
简介:第1课 关于三角形的一些概念(一) 一、学习准备1.线段有个端点.2.如图3-1中有条线段,有个角.用字母表示图中的线段是,表示图中的角是.图3-1图3-23.如图3-2中,∠AOC=∠BOC,OC叫做∠AOB的.二、读书自学(P2~P3)重点领会三角形、三角形的角平分线、中线的意义,理解这些概念的几何语言.三、效果反馈(做完后同桌互相批改)1.如图3-3中,是三角形的是.图3-32.如图3-3的图(2)中,△ABC的∠B的对边是,边AB的对角是.3.如图3-4中有个三角形,分别记为.图3-4图3-54.如图3-5中,∠ABD=12∠ABC,线段BD叫做△ABC的.图3-65.如图3-6中,
简介:本文讨论了2π周期和反周期函数在等距结点上的一类Birkhoff型2-周期三角和仿三角插值问题,给出了此问题有解的充要条件,并构造出插值基。