简介:作为一个例子拿潜在的第五顺序的MKdV方程介绍一个可能的方法构造非线性的PDE的不变性。基于潜在的第五顺序的MKdV方程并且由解决相应Ricattiform的获得的Backlundtransformation宽松的对,潜在的第五顺序的MKdV方程的不变性被掘出。因此,由就微分并且照过程,潜在的第五顺序的MKdV方程的答案能从一个已知的答案被获得。
简介:本文得到一个涉及分担函数的亚纯函数族的正规定则:设F是区域D内的一族亚纯函数,k,l是正整数,ψ(z)季0为区域D内全纯函数,且其零点重数至多为l,如果对F中的任意函数,ff≠0,且f的所有极点重数都至少是l+1,如果F中的任意函数f与g满足f^(k)与g^(k)在D内分担ψ(z),那么F在D内正规.
简介:设H是一实Hillber空间,K是H之一非空间凸子集,设(Ti)i=1^N是N个Lipschitz伪压缩映象使得F=∩i=1^NF(Ti)≠Ф,其中F(Ti)={x∈K:Tix=x}并且{αn}n=1∞,{βn}n=1^∞包含[O,1]是满足如下条件的实序列(i)∑n=1^∞(1-αn)^2=+∞;(ii)limn→∞(1-αn)=0;(iii)∑n=1^∞(1-βn)〈+∞;(iv)(1-αn)L^2〈1,arbitaryn≥1;(v)αn(1-βn)^2+αm[βn+L(1-βn)-]^2〈1,其中L≥1是{Ti}i=1^N的公共Lipschitz常数,对于x0∈K,设{xn}n=1^∞是由下列定义的复合隐格式迭代xN=αnxn-1+(1-αn)Tnyn,yn=βnxn+(1-βn)Tnxn,其中Tn=TnmodN,则(i)limn→∞||xn-p||存在,对于所有的p∈F;(ii)limn→∞d(xn,F)存在,其中d(xn,F)=infp∈F||xn-p||;(iii)limn→∞inf||xn-Tnxn||=0.本文的结果推广并且改进H—K.Xu和R.G.Ori在2001年的结果和Osilike在2004年的结果,并且在这篇文章中,主要的证明方法也不同与H—K.Xu和Osilike的方法.
简介:EfronandAmaripresentedaRiemanniangeometricframeworkforqurvedexponentialfamiliesandstudiedtheinformationlossandthevarianceoftheestimateusingthisframilies.InthispapproposearelativelyrumplegeometricframeworkinEuclideanspace.Basedonthisnewframework,westudyeonfidenceregiodsforcurvedexponentialfamilieswhichhavenotbeenstudiedbyEfronandAmari.TheresultsobtainedbyHamiltonetal.areextendedtocurvedexponentialfamilies.