简介:有密度依赖者粘性的one-dimensionalcompressible流动的方程的答案的全球存在被证明。明确地,起始的数据上的假设是模常数在可能不同的x=+∞和x=-∞,被说密度和速度在L~2,并且密度上面并且下面被围住离开零。Theresults也证明甚至在这些条件下面,既不真空状态也不集中状态能在有限时间被形成。
简介:Inthispaper,thevariablecoefficientSine-Gordontypeequationuxt=a(t)sinu+β(t)uxx+k(t)(xux)xisdiscussed.ItisrelatedtotheeigenvalueproblemVx=QV.Thestructureequationandtheevolutionlawsofscatteringdataforthesecondequationarederivedandtheinversescatteringsolutionofthefirstequationisobtained.
简介:应用线性算子的积分群理论证明M/M^B/1排队模型的时间依赖解的存在唯一性,其次推出M/M/1排队模型的时间依赖解的存在唯一性。
简介:应用LeraySchauder不动点定理,研究了一类具时滞的Rayleigh型泛函微分方程:x″(t)+f(x′(t))+g(x(t-τ(t)))=e(t)的反周期解问题,得到了反周期解存在的新的结果。