简介:给出了Banach空间中线性离散时间系统一致与非一致多项式膨胀性的概念,使其在相应空间中范数的增长速度不快于指数型增长,并用实例阐释了二者的关系.借助于指数型膨胀性的研究方法,讨论了其非一致多项式膨胀性的离散特征.作为应用,利用Lyapunov函数给出了相应概念的充要条件.得到了指数膨胀性理论中一些经典结论在非一致多项式膨胀情形下的变形.
简介:Inthispaper,thevariablecoefficientSine-Gordontypeequationuxt=a(t)sinu+β(t)uxx+k(t)(xux)xisdiscussed.ItisrelatedtotheeigenvalueproblemVx=QV.Thestructureequationandtheevolutionlawsofscatteringdataforthesecondequationarederivedandtheinversescatteringsolutionofthefirstequationisobtained.
简介:应用LeraySchauder不动点定理,研究了一类具时滞的Rayleigh型泛函微分方程:x″(t)+f(x′(t))+g(x(t-τ(t)))=e(t)的反周期解问题,得到了反周期解存在的新的结果。