简介:用变分方法得到一类非线性差分方程多重周期解的存在性.我们的结果推广了Cai,Yu和Guo[Comput.Math.Appl.,52(2006),1630-1647]的结果,并且这里给出的证明显著地简化了.
简介:利用上下解方法,锥理论,Schauder不动点定理,Amann不动点定理以及映射度理论研究Sturm—Liouville边值问题(SL.ρ),在某些特定条件下,得到了有多重非负解的存在性结论.从而一定程度上推广和改进了最近的相关结果.
简介:利用临界点理论研究具有部分周期位势的非自治常p-Laplace系统周期解的存在性.在具有p-线性增长非线性项时,根据广义鞍点定理,得到了系统多重周期解存在的充分条件.
简介:研究了一类奇摄动2m阶椭圆型方程解的多重边层现象.利用比较定理得到解的一致有效的渐近展开式.
简介:利用临界点理论研究带阻尼项的二阶Hamilton系统周期解的存在性.在具有部分周期位势和线性增长非线性项时,根据广义鞍点定理定理,得到了系统多重周期解存在的充分条件.
简介:在这篇文章里,我们用双线性对构造了一种无证书的环签名方案.并证明它是无条件匿名的,且在随机预言模型中.计算性Diffie-Hellman问题是难解的,我们方案在适应性选择消息攻击下是存在性不可伪造的,它的安全性比在基于身份的公钥密码体制下高.本文首次用多线性形式构造了一个基于身份的广播多重签名方案,它的安全性是基于计算性Diffie-Hellman困难问题.
简介:研究了—(p,q)-Laplacian拟线性椭圆方程组.当连续函数V和W在两种情形下,利用Moser迭代技巧和Ljusternik-Schnirelmann畴数理论,建立了方程组正解的存在性和多重性结果.