学科分类
/ 1
20 个结果
  • 简介:利用上下解方法,锥理论,Schauder不动点定理,Amann不动点定理以及映射度理论研究Sturm—Liouville边值问题(SL.ρ),在某些特定条件下,得到了有多重非负解的存在性结论.从而一定程度上推广和改进了最近的相关结果.

  • 标签: Sturm—Liouville边值问题 正规体锥 上下解方法 不动点 映射度
  • 简介:本文中研究了一个带有启动时间的Geom/Geom/1多重工作休假排队模型。服务台在休假期间,不停止服务,而是以较低的服务率为顾客提供服务。运用拟生灭过程和矩阵几何解的方法,给出了该模型的稳态队长分布,并求出了平均队长以及顾客的平均逗留时间。

  • 标签: 工作休假 启动时间 平均队长 平均逗留时间
  • 简介:利用Z2-指标理论和临界点理论,讨论了一类四阶微分方程u(4)+au"=μu+f(t,u),0〈t〈L,u(O)=u(L)=u"(0)=u"(L)=0共振问题解的多重存在性,这里a〉0,f∈C1([0,L]×R,R),为特征值问题u(4)+au"=λu的某个特征值,其中特征值满足λ4〈0,λk〉0,k≥2.

  • 标签: 四阶微分方程 共振 临界点 Z2-指标理论
  • 简介:利用临界点理论研究具有部分周期位势的非自治常p-Laplace系统周期解的存在性.在具有p-线性增长非线性项时,根据广义鞍点定理,得到了系统多重周期解存在的充分条件.

  • 标签: 常p—Laplace系统 周期解 临界点
  • 简介:利用临界点理论研究带阻尼项的二阶Hamilton系统周期解的存在性.在具有部分周期位势和线性增长非线性项时,根据广义鞍点定理定理,得到了系统多重周期解存在的充分条件.

  • 标签: 二阶HAMILTON系统 线性增长 部分周期 周期解 临界点
  • 简介:本文讨论如下边值问题:Lεy=ε^5y^(5)+ε^2a(x)y^(4)+εb(x)y^″′+c(x)y″+f(z,y)=0y′(-1,ε)=A(ε),y″(-1,ε)=B(ε),y″′(-1,ε)=C(ε),y′(0,ε)=D(ε),y(0,ε)=B(ε)x=0是转向点(c(0)=0),而在x=-1处出现多重边界现象,对不同层次采用不同的伸长变量。构造具有不同级的边界层校正项,得到关于解的一致有效的渐近展开式和有关的余项估计。

  • 标签: 转向点 边值问题解 奇摄动 边界层 余项 渐近展开式
  • 简介:研究含两参数的二阶常微分方程Cauchy问题解的多重层性质,根据不同层次引用不同的伸长变量,分别构造了具有不同量级的边界层校正项,从而证得关于解的一致有效的渐近展开式和有关的余项估计.

  • 标签: 双参数 CAUCHY问题 多重层性质
  • 简介:在这篇文章里,我们用双线性对构造了一种无证书的环签名方案.并证明它是无条件匿名的,且在随机预言模型中.计算性Diffie-Hellman问题是难解的,我们方案在适应性选择消息攻击下是存在性不可伪造的,它的安全性比在基于身份的公钥密码体制下高.本文首次用多线性形式构造了一个基于身份的广播多重签名方案,它的安全性是基于计算性Diffie-Hellman困难问题.

  • 标签: 环签名 无证书的公钥体制 多重签名 计算性Diffie-Hellman问题
  • 简介:Bhattacharyya和Soejoeti(1980)对步进应力加速寿命试验提出损伤失效率模型(TFR模型).本文针对TFR模型,对两参数Weibull分布,在步进应力加速试验下给出了参数的近似极大似然估计和逆矩估计,并通过Montr-Carlo模拟考察了估计的精度,比较了各估计的优劣.

  • 标签: WEIBULL分布 损伤失效率模型 残存函数 近似极大似然估计 逆矩估计