简介:在本文中,作者研究了一种特殊的Banach空间,即Orlicz函数空间LM的子集A要构成LN-弱序列紧集合的充分必要条件是什么,给出了第一判别充要定理.
简介:关于二元函数在一点的全微分存在的判别条件,一般教科书都是要求两个一阶偏导数在该点处连续(参见[1])。文献[2]削弱了这个条件,只要求其中一个一阶编导在该点处连续,文献[3]给出了全微分存在的另一个条件:要求两个一阶偏导数在该点的一个邻域内存在(但不要连续),及在邻域内至少存在一个有界的二阶混合偏导数。容易说明,〔2〕、〔3〕中判别条件的适用范围并不完全一样.从而〔2〕、〔3〕给出的都只是充分条件而非必要条件.讫今为止,尚未见到关于全微分存在的充分必要条件.本文将偏导数和全微分联系考虑,得到一个全微分存在的充分必要条件.作为这个充要条件的推论,可立即得出〔2〕、〔3〕中的判别条件.
简介:本文首先给出integralfromato+∞f(x)dx收敛≠lim+∞f(x)=0的一更强的例子,然后给出一个与级数收敛的必要条件类似的,integralfromato+∞f(x)dx收敛的必要条件。在许多工科高等数学教材中,广义积分敛散性的判别,一般都在级数中讨论,因而一部分同学和个别教师往往把级数的一些重要性质,直接推广到广义积分integralfromato+∞f(x)dx上。最典型的错误是把级数收敛的必要条件推广到广义积分上,即integralfromato+∞f(x)dx收敛?lim?+∞f(x)=0.这类错误较为普遍。