简介:《义务教育数学课程标准(2011)》在其总体目标阐述中写道:“获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能.”在这一目标的阐述中数学知识不仅包括客观的、事实性的知识,还包括学习过程中产生的带有鲜明个体认知特征的、属于个人的数学活动经验.教学中关注数学活动经验,是课程标准的要求,也是提高数学课堂教学有效性的策略.
简介:系统研究了具有急性和慢性两个阶段的MSIS流行病模型.由两节构成,第1节建立和研究了具有急慢性阶段的MSIS流行病模型;第2节在第1节的基础上建立和研究了具有慢性病病程的MSIS流行病模型.第1节的模型是四个常微分方程构成的方程组.第2节的模型既含有常微分方程,又含有偏微分方程.运用微分方程和积分方程中的理论和方法,得到了这两个模型再生数()0的表达式.证明了当()0<1时,无病平衡态是全局渐近稳定性,给出了各模型地方病平衡态的存在性和稳定性条件.
“童眼”看教材——浅谈基于儿童数学经验的教材解读
具有急慢性阶段的MSIS流行病模型阈值和稳定性结果