简介:系统的不确定和外部干扰是控制理论的主要敌手。最近二十年出现了一个新的对付不确定的控制方法称为自抗扰控制。本文旨在介绍一本这方面的新书:ActiveDisturbanceRejectionControlforNonlinearSystems:AnIntroduction,及其相关的背景。该书是一本自抗扰控制数学理论著作。为了引出本书的主要内容,我们扼要介绍了几种其他的对付系统不确定的控制方法,包括鲁棒H∞-控制、滑模控制、自适应控制以及内模原理,说明自抗扰控制的主要思想和与这些方法的异同之处。特别是指出了自适应控制、内模原理的估计和消除策略及其在自抗扰控制中的大规模应用。
简介:H_1,H_2,H_3是实希尔伯特空间,CH_1,QH_2是两个非空闭凸子集,AH_1→H_3,B:H_2→H_3是两个有界线性算子.我们的兴趣是解决下面的问题:找x∈C,y∈Q使得Ax=By.Moudafi提出了同步迭代算法(SIM)来解决分裂等式问题.为了利用同步迭代算法(SIM),在计算步长时需要知道有界线性算子的范数,这个范数的数值计算中难以实现.本文的主要目的是介绍一种选择步长的方式使得同步迭代算法的完成不需要任何算子的范数.同时,松弛的同步迭代算法也被提出.最后,论文通过数值试验得出这种步长的选择方法使得并行迭代算法收敛更快.
简介:设G是一个阶数大于等于4的简单连通图.代4(G)和d4(G)分别表示G的第四大无符号拉普拉斯特征值和第四大度.本文证明了K4(G)≥d4(G)一2.