简介:首次给出有限群极大子群的强θ^*-完备的定义,利用这一概念得到关于群可解性、超可解性的新的充要条件.
简介:研究了阶为p^m(m+1)/2且交换子群的最大阶为p^m的有限群,得到了这类特殊的p群的几个性质,给出了满足极大类条件的这类p群的同构分类.
简介:考查了次正规子群对有限群结构的影响,得到有限群可解的若干充分条件和超可解的一个充分条件.
简介:群G的子群H称为半置换的,若对任意的K≤G,只要(|H|,|K|)=1,就有HK=KH.H称为s-半置换的,若对任意的p||G|,只要(p,|H|)=1,就有PH=HP,其中P∈Sylp(G).本文研究Sylow子群的极大子群及极小子群的s-半置换性对有限群的p-超可解性的影响.
简介:利用量子群U=U_q(f(K))的表示理论及其局部有限子代数F(U)的子模结构,证明了U_q(f(K))的局部有限子代数F(U)的任一非零理想均可由若干个具有不同权的最高权向量的和生成.
简介:群G的一个子群H称为在G中S-拟正规嵌入的,如果对H阶中的每一个素因子p,H的Sylowp-子群也是G的某个S-拟正规子群的Sylowp-子群.利用子群的S-拟正规嵌入性给出了群为p-幂零群及超可解群的一些特征.
简介:对于有限群G的极大子群M,令β(G:M)表示整除│G:M│的素因子个数,β(G)表示所有β(G;M)中的最大数.令μ(G)为使得β(G:M)=β(G)的极大子群的集合.通过对这一类极大子群的θ-偶赋予一定条件,得到了判断群G可解、超可解的新结果.
简介:粒子群算法是一种基于群体智能的随机并行算法,它在很多优化问题中都得到了比较好的应用。本文针对粒子群容易陷入局部最优解,提出了一种加入创新粒子的粒子群,实验模拟结果表明加入创新粒子的粒子群有更好的结果和收敛速度。
简介:对于有限群G的每一主因子H/K来说,若G的子群L满足LH=LK或者L∩H=L∩K,则称L是G的CAP-子群.本文通过假设G的每个非循环Sylow子群P有一个子群D使得1〈|D|〈|P|,且P的所有阶为|D|和2|D|(若P是非交换2-群且|P∶D|〉2)的子群H是G的CAP-子群,得到G为p-幂零群的一个结果.
简介:Tikhonov正则化方法是求解不适定问题最为有效的方法之一,而正则化参数的最优选取是其关键.本文将混沌粒子群优化算法与Tikhonov正则化方法相结合,基于Morozov偏差原理设计粒子群的适应度函数,利用混沌粒子群优化算法的优点,为正则化参数的选取提供了一条有效的途径.数值实验结果表明,本文方法能有效地处理不适定问题,是一种实用有效的方法.
简介:生产系统随着设备磨损往往会失控或发生故障,给企业带来巨大损失.本文以备货型生产系统为研究对象,根据其成品先入库后销售的特点,建立基于故障率的非周期的生产、维修、库存整合模型.模型以最小化单位总成本为目标,基于萤火虫算法的邻域结构改进粒子群算法,求解系统的最优生产率和维修策略,并分析比较不合格产品率、失控率对目标函数值和最优策略的影响.
简介:数学教学过程中,如果将在有限范围内的思维定式或得到的结论推广到无限领域中去考虑问题或得出相应的结论,往往会导致结论的错误.在学习函数极限部分时,往往会出现求“∞∞,∞-∞,1∞”这三类来定型的极限.因学生在初中的思维定式是:aa=1,a-a=0,1a...
简介:本文首先介绍了粒子群算法(PSO)的基本模型及其运行机制;然后,通过粒子迭代位移、轨迹分析和函数上的参数试验,研究了c1,c2参数对粒子行为和算法进化性能的影响,以及对粒子目标识别和方向感的影响;接着,又探讨了PSO中的解的更新空间不断塌缩、粒子的“游荡”与“振荡”、粒子进化与多样性损失等几个确定性现象和随机性搜寻的必要条件;最后,分析了早熟收敛和局部收敛的原因。通过研究,加深了对粒子群算法(PSO)基本模型运行机制的认识和对C1,c2参数特性的了解。
简介:用时空全离散间断零次有限元对Riemarm问题进行了数值求解,没有出现振荡,很好的模拟了稀疏波的逐渐稀疏化和激波的剧烈变化。
简介:一个环R称为有向有限的,如果对于x,y∈R,xy=1蕴涵着yx=1.本文我们首先建立有向有限环的某些新的刻画,然后考察了它们的某些性质.
简介:设Ω是有限结合环类中全部弱单环组成的环类,Ω1∪Ω2=Ω,Ω1∩Ω2=Φ,在有限结合环类中,我们证明了LΩ1=UΩ2可以成立,并给出等式成立的充要条件,使用这个结论,我们可以证明,在有限结合环类中,超幂零根是特殊根。
简介:本文研究了带线性等式的约束条件的有限总体中的最优预测问题,给出了条件可预测变量和条件最优线性无偏测的定义,得到了条件可预测变量的所有条件最优线性无偏预测,并证明了它在几乎处处意义下的唯一性。
简介:设A是一个有限维代数,R为A的对偶扩张代数.本文我们讨论R的有限维数findimRofR,证明了,在一般情况下findimR≠2findimA,这就回答了惠昌常教授所提的一个问题.
简介:令C为复数域,G为有限群。由于每个CG-模可以写成不可约CG-模的直和,于是对表示的研究实际转化成了对不可约表示的研究。而群的忠实表示可以比较好地体现原有群的性质,所以,对于给定的群,找出该群所有不可约忠实表示是很有意义的。而对于一般有限群来说,找出其所有不可约忠实表示并不容易。本文我们给出了有限阿贝尔群G的所有不可约忠实表示。
简介:以Bowley博弈模型为核心,将寡头的调整速度作为企业的竞争策略,并对该模型Nash均衡点的稳定域进行分析;通过数值仿真把双寡头的策略区域分为均衡区、周期区和混沌区。研究发现双寡头博弈市场中,寡头为了获得更大的利润而不断改变自身产量策略,这是市场出现周期波动、甚至陷入混沌的根本内因.
有限群极大子群的强θ^*-完备
交换子群较小的一类有限p群
子群次正规性对有限群可解性的影响
s-半置换子群对有限群的p-超可解性的影响
量子群U_q(f(K))的局部有限子代数的稳定理想
S-拟正规嵌入子群
关于一类极大子群的θ-偶
一种加入创新粒子的粒子群
关于CAP-子群的一点注记(英文)
基于混沌粒子群算法的Tikhonov正则化参数选取
基于改进粒子群算法的备货型生产系统的生产与维修整合模型
从“有限”到“无限”的跨越
基于粒子迭代位移和轨迹的粒子群算法C1、C2参数特性分析
Riemann问题的间断有限元
关于有向有限环的某些结果
有限结合环类中的特殊根
线性等式约束下有限总体中的最优预测
关于对偶扩张代数有限维数的注记
有限阿贝尔群的所有不可约忠实表示
有限理性双寡头博弈模型的复杂性分析