简介:通过对欧几里得几何与公理化方法的回顾,阐述了对《论语》进行公理化诠释的必要性,并且借鉴并运用公理化的方法,在符合原意的基础上,将《论语》的大部分整理成演绎系统.即在给出一些基本假设和定义以后,形成若干公理,并以逻辑推理的方法,推导和证明众多蕴含在《论语》中的系列命题,从而可将隐含在《论语》中的孔子思想的逻辑体系凸显出来.
简介:根据SARS病毒传播的特性和侯振挺等人提出的马尔可夫骨架过程理论,建立了SARS病毒传播的马尔可夫骨架模型,并得出结论,在任一时刻的疑似病例数,传染病人数是某非负线性方程组的最小非负解。
简介:艾滋病是严重危害人类健康的传染病,抗病毒治疗是防治艾滋病的一种公共卫生策略。基于2005-2009年国家免费抗病毒治疗数据和中国艾滋病联合防治评估报告数据,利用一个离散数学模型研究了不同的抗病毒治疗覆盖率和治疗效果对于基本再生数的影响。结果表明,抗病毒治疗后由于感染者体内病毒载量的减少而导致的传染性降低的多少是影响我国艾滋病流行的关键因素。
简介:本文对一类具有时滞的病毒模型进行分析。得到了该模型全时滞稳定的充分且必要条件,这些都是简明的代数判定,同时,还给出了时滞界及Hopf分支存在的条件.
从欧几里得几何到《论语》的公理化诠释
关于SARS病毒传播的马尔可夫骨架过程模型
抗病毒治疗对HIV传播的基本再生数的影响
一类具有时滞的病毒模型的稳定性及Hopf分支