学科分类
/ 25
500 个结果
  • 简介:通过对局部凸空间上凸函数的讨论,首先建立了关于凸函数β的特征定理;定义在局部凸空间E的非空开凸子集D上的每个连续凸函数f均在D的一个稠密的子集上β-微(也称E具有β-LP性质)的充分必要条件为其对偶E“中的每个w~*紧凸子集均是自己w~*一β暴露点的w~* 闭凸包;然后进一步证明了E~*上的w~*一β扰动优化定理成立,即定义在E~*的每个有界w~*闭集A~*上的w 下半连续有下界的函数g以及每个ε >0均存在x0 Ax E满足使得(g+x)(x )=infA (g+x)且{xi } A ,(g+x)(xi )→infA (g+x)推出xi -xo ,当且仅当E具有β-LP性质.

  • 标签: 变分原理 扰动优化 实值函数 局部凸空间 可微性
  • 简介:本文就可测函数是连续函数的推广做了进一步的论述。证明了任意测集合上的连续函数都是测函数。证明过程启发人们对测函数的结构进行更好的研究并由此对鲁津定理的理解更深透.

  • 标签: 可测函数 F_σ型集
  • 简介:论述了分段函数在数学分析中的作用,并以分段函数为工具,给出了函数的原函数存在和黎曼积之间的关系,有助于全面掌握原函数和定积分这两个重要概念.

  • 标签: 分段函数 可积性 原函数 间断点
  • 简介:本文引入一类特殊的实值函数(模),并由此对Banach空间上凸函数的Fréchet,更一般地,β-进行了特征刻画.

  • 标签: 凸函数 可微性 次微分 连续模
  • 简介:设Sn是那个对称群让={1,2,…n},B^*中所有对对换的集合和B包含于B^*,关于B的对换图W,被定义为V(Wn)=,E(Wn)={[uv]L[uv]:(uv)∈B}。如果Wn是一棵树,则这个对换图称为一棵对换树Tn。Tn是Sn的一个极小生成集。在这篇文章里,我们研究了Cayley图Cay(Sn,Tn)的性质,证明了Cay(Cn,Tn)是(n-1)-扩的,即,Cay(Sn,Tn)的达到最大。

  • 标签: CAYLEY图 对称群 n-可扩
  • 简介:若图G的一个匹配M也是G的点导出子图,则称M是图G的一个导出匹配.我们称图G是导出匹配扩的,若它的任何一个导出匹配可以扩充成一个完美匹配.本文我们讨论无爪图的导出匹配,得出如下结论,并同时指出这些结果是最好可能的.设图G是有2n个顶点的无爪图,1.若图G是最小度大于或等于2[n/2]+1,则图G是导出匹配扩的.2.若图G是局部2连通的,则图G是导出匹配扩的.3.若图G是k正则的k≥n,则图G是导出匹配扩的.

  • 标签: 无爪图 导出匹配可扩性 顶点 局部2连通图 完美匹配
  • 简介:对赋Luxember范数或Orlicz范数的Orlicz型序列空间,诸如古典的、广义的参数式的,本文总结、补充、比较列出了暴露点暴露的充分必要刻画,并对以往结果中的错误进行了修正,从而在序列空间方面系统地完成了有关暴露的刻画。

  • 标签: N-函数 Orlicz-函数 Musielak-Orlicz-函数 序列空间 Luxember范数 ORLICZ范数
  • 简介:本文讨论强凸、L~kR,LωP和(G)性质之间的关系,指出强凸介于LωR和(G)性质之间,证明光滑的有(G)性质的Banach空间是强凸的,此外指出存在一个Banusch空间X,它是LωR但对任意自自数k,X不是L-kR.

  • 标签: 凸性 BANACH空间 性质 证明 光滑 存在
  • 简介:设Sn是那个对称群.让〈n〉={1,2,…,n},B*表示Sn中所有对换的集合和BB*.关于B的对换图Wn被定义为V(Wn)=〈n〉,E(Wn)={[uv]:(uv)∈B}.如果Wn是一棵树,则这个对换图称为一棵对换树Tn.Tn是Sn的一个极小生成集.在这篇文章里,我们研究了Cayley图Cay(Sn,Tn)的性质.证明了Cay(Sn,Tn)是(n-2)-扩的,即,Cay(Sn,Tn)的达到最大.

  • 标签: CAYLEY图 对称群 n-可扩
  • 简介:S^p(1≤p≤∞)空间为导数属于Hardy空间H^p的复平面单位圆盘D上所有解析函数组成的空间.令函数φ和φ是D上的解析函数且φ(D)D,则将算子W(φ,φ):f→φfoφ称为加权复合算子.文章给出了当1≤q≤p≤∞,φ∈S^∞时,加权复合算子W(φ,φ)从空间S^p到S^q上的有界的充要条件.然后通过推广经典的Fejer-Riesz不等式证明了当1〈p≤∞时,S^p到圆盘代数A上的嵌入映射是紧的.

  • 标签: S^p空间 HARDY空间 加权复合算子 Fejer-Riesz不等式 嵌入映射
  • 简介:<正>以0,1为元素所构成的n阶方阵A=(aij)n×n,i,j=0,1,2,…n-1,其元素之间的加法与乘法运算按下列方式:则称A为布尔矩阵,文[1],[2]对这类矩阵的性质作了深入的研究和全面的介绍,文[4][5]给出了经典循环矩阵和本原性的条件,本文给出了另一类循环布尔矩阵的和本原性的充分必要条件。设g是一个非负整数,一个n阶g-循环矩阵A=(aij)n×n是一个这样的矩阵,除

  • 标签: 布尔矩阵 可约性 本原性 循环矩阵 乘法运算 充分必要条件
  • 简介:<正>§1引言[1,2]中,我们对两参数马尔科夫过程的三点转移函数族{Pijkr(s,t)}的解析性质进行了研究,包括,连续,微分等,以及恒正状态对的分解定理等。我们发现,两参数马尔科夫过程与单参数马尔科夫过程虽然有某些相似,但更重要的是本质上的不同。本文对两参数马尔科夫过程的三点转移函数族的解析性质作进一步的探讨。

  • 标签: 两参数 三点转移函数族 马尔科夫过程 状态空间 可微性 解析性质
  • 简介:图G中同构于K1,p的子图叫G的p-爪(p≥3).如果G中任意一个p-爪中1度顶点之间边的数目≥p-2,则称G为K1,p-受限图,它是无爪图(p=3时)的推广.本文证明了:连通、局部3-连通的K1,4-受限图是路扩的.

  • 标签: K1 p-受限图 局部k-连通图 路可扩图
  • 简介:利用Orlicz空间内有关不等式技巧在Orlicz空间内研究了用三角多项式的倒数逼近周期微函数的问题.得到了一个逼近定理及其推论.

  • 标签: 逼近 周期可微函数 三角多项式
  • 简介:讨论单位圆盘中Dirichlet空间上Toeplitz算子的性质,给出了Dirichiet空间上以一类连续函数为符号的Toeplitz算子满足亚正规的充分必要条件.

  • 标签: DIRICHLET空间 TOEPLITZ算子 亚正规性 拟齐次
  • 简介:本文讨论了赫斯特指数的计算方法和R/S分析法在股市时间序列中的应用,表明了上证综指和深圳成指的预测

  • 标签: 赫斯特指数 R/S分析法 时间序列