简介:以卷积神经网络为代表的深度学习算法在医学影像分析领域正引起广泛美注,并取得了令人惊叹的进步。为了进一步提高卷积神经网络在计算机辅助筛查肺结节应用的准确率,本文设计了2种改良的深度卷积神经网络,这些改进加快了神经网络的训练速度.有效地防止了算法的过拟合。相比只采用二维卷积核的其他检测模型,该模型能够有效地学习到CT影像三维重建后的图像特征。通过实验,改进的检测模型在LUNAl6数据集上的准确率明显好于其他模型,这种网络结构也可用于医学影像领域中其他三维图像的检测场景。最后,构建了一套适用于远程医疗的“计算机辅助肺癌筛查与诊断系统”,该系统能够自动检测出CT影像中肺结节,并给出结节的良恶性概率评估。通过该系统的应用,可以有效缓解放射科医生超高的劳动强度,提高阀片效率,服务更多患者;减少漏诊和误诊发生的次数,有助于提高肺结节的诊断准确率;从而促进我国肺癌早筛工作的推广。
简介:对赋Luxember范数或Orlicz范数的Orlicz型序列空间,诸如古典的、广义的及参数式的,本文总结、补充、比较列出了暴露点及暴露性的充分必要刻画,并对以往结果中的错误进行了修正,从而在序列空间方面系统地完成了有关暴露性的刻画。
简介:设g1.g2为正规函数.对所有的0〈p.q〈∞,我们得到了Bergma型空间的加权Cesaro算子Tψ:Ag1^p→Ag2^q为有界算子和紧算子的充要条件.
简介:利用文献[1]中非对称逼近的方法得到了周期型Bohr不等式.
简介:对于圆锥型和棱锥型Hamiltonian的Eikonal型方程,本文给出了一种几何方法,得出其初值问题解的表达式并且说明由此式给出的解为原初值问题的粘性解.首先用一个凸函数序列逼近Eikonal型方程中的Hamiltonian,再由Hopf-Lax公式给出方程序列的粘性解,最后证明了该粘性解序列会收敛到Eikonal方程的粘性解.
简介:设H是特征为零的代数闭域k上的半单Hopf代数.本文证明了如果dimkH是小于351的奇数,则H是Frobenius型Hopf代数.