学科分类
/ 1
2 个结果
  • 简介:本文仅用Malgrange预备定理和Haar积分得到了下述结果:设G为线性地作用于Rn上的紧李群,σ1,…,σk是P(Rn)G的一组极小齐次Hilbert基,并用<σ1,…,σk>表(Rn)由σ1,…,σk生成的理想。若(Rn)/>σ1,…,σk>作为实向量空间是有限维的,则f∈(Rn)G当且仅当存在g∈(Rk)使得f(X)=g(σ1(X),…,σk(X)),X=(x1,…,xn),即σ*(Rk)=(Rn)G.

  • 标签: 紧李群 不变量 函数芽 预备定理 注记 向量空间