简介:近年来,若干文章对“Lagrange微分中值定理的逆问题”进行了讨论,但其表述均不完整,且证明也较繁琐。本文使用严格凸(严格凹)函数的性质,给出该问题一个条件较弱且表述较完整的结果,其证明也较简洁。
简介:Inthispaper,theinverseeigenvalueproblemofHermitiangeneralizedanti-Hamiltonianmatricesandrelevantoptimalapproximateproblemareconsidered.Thenecessaryandsufficientconditionsofthesolvabilityforinverseeigenvalueproblemandanexpressionofthegeneralsolutionoftheproblemarederived.Thesolutionoftherelevantoptimalapproximateproblemisgiven.
简介:基于Schmidt正交化过程获得了一种计算逆矩阵的新方法.对于可逆矩阵A,有Q=MA,其中Q是酉矩阵,M是下三角矩阵.本文直接从Schmidt规范正交化出发,获得下三角矩阵M的计算公式,从而求得逆矩阵A-1=QHM=AHMTM.
简介:证明了正则空间中闭Lindelof映射逆保持序列式meso紧性,从而改进了MancusoVJ关于正则空间中完备映射逆保持meso紧性这一结果;进一步我们指出定理条件中原象空间的正则性不可被省略而象空间的正则性可以用原象空间的正规性来替代.
简介:本文利用Hardy-Littlewood极大函数、光滑模和K-泛函之间的等价关系、N函数的凸性、算子矩量估计及Jensen不等式等工具,研究了由陈文忠定义的LupasBaskakov型算子在Orlicz空间内的逼近性质,给出并证明了该算子在Orlicz空间内逼近的强型逆定理.由于Orlicz空间比连续函数空间和L_p空间涵盖更广泛,其拓扑结构也比L_p空间复杂得多,所以本文的结果具有一定的拓展意义.