简介:本文考虑了一类食饵具有流行病和阶段结构的脉冲时滞捕食模型.利用脉冲时滞微分方程的相关理论和方法,获得易感害虫根除周期解全局吸引的充分条件以及当脉冲周期在一定范围内时,天敌与易感害虫可以共存且易感害虫的密度可以控制在经济危害水平E(EIL)之下.我们的结论为现实的害虫管理提供了可靠的策略依据.
简介:风力发电是最具开发潜力的非水电再生能源,为保证电网的功率平衡和运行安全,需要对风电功率给出准确的预测。对于风电功率预测通常可采用以下3种方法:三次指数平滑法、ARMA方法以及灰色预测方法,但预测准确性不高,而采用风电功率预测的组合预测方法可以提高风电功率精度。将4种预测方法运用到实际风电功率算例中,由数值计算结果可以得出组合预测方法预测风电功率得到的结果精度较高。
简介:本文研究的是由记忆热方程和Euler-Bernoulli梁方程构成的传输系统,其中热方程作为梁方程的控制器.通过频域上的能量乘子法,我们建立了耦合系统的指数稳定性.
简介:系统研究了具有急性和慢性两个阶段的MSIS流行病模型.由两节构成,第1节建立和研究了具有急慢性阶段的MSIS流行病模型;第2节在第1节的基础上建立和研究了具有慢性病病程的MSIS流行病模型.第1节的模型是四个常微分方程构成的方程组.第2节的模型既含有常微分方程,又含有偏微分方程.运用微分方程和积分方程中的理论和方法,得到了这两个模型再生数()0的表达式.证明了当()0<1时,无病平衡态是全局渐近稳定性,给出了各模型地方病平衡态的存在性和稳定性条件.
简介:建立和研究了具有染病年龄结构和重复感染的两菌株SIJR流行病模型,得到了与两菌株相对应的基本再生数的表达式,给出了无病平衡点,各菌株占优平衡点以及共存平衡点的存在性和稳定性条件.最后详细讨论了该模型的特殊情形一重复感染率为常数的情形.
简介:研究了一类星形弹性网络系统在热效应影响以及边界反馈作用下的稳定性问题及系统相应(广义)特征向量的Riesz基性质.基于Green和Naghdi第二类热弹性理论,假设在该热弹性系统中热以有限波速传播,并且在传播过程中无能量耗散.证明了该热弹性网络系统能量渐近衰减到零.并进一步通过系统算子谱分析,讨论得出该系统算子的(广义)特征向量构成状态空间的一组Riesz基.
简介:讨论了具有热储备和两个独立相同部件的平行系统在由常规错误引起失效下的渐进稳定性.首先,利用Banach空间的Volttera算子方程得到了非负动态解的存在唯一性;然后,利用强连续线性算子半群理论证明了系统正的动态解的存在唯一性,而由于初始值不在定义域内,故得到的是mild解.但在t>0时系统古典解存在唯一,所以此时mild解即为古典解.最后,利用线性算子半群稳定性的结果,证明了该动态解在范数意义下收敛到稳态解,进而得到了系统的渐进稳定性.
食饵具有流行病的阶段结构捕食模型
基于组合预测方法的风电功率预测模型
记忆热-梁方程传输系统的指数稳定性
具有急慢性阶段的MSIS流行病模型阈值和稳定性结果
具有重复感染和染病年龄结构的两菌株SIJR流行病模型分析
星形热弹性网络系统的稳定性及Riesz基性质
具有热储备的可修复平行系统在由常规错误引起失效下的渐进稳定性