简介:引进分次Armendariz环的概念,讨论了分次环R=n∈ZRn及由它导出的非分次环R,R0,及R[x]之间关于Armendariz环性质的关系,并推广了[8]的结论,得到在R=n∈ZRn是Z-型正分次环的前提下,若R是分次Armendariz,分次正规环,则R是P.P.环(Baer环)当且仅当R是分次P.P.环(分次Baer环).
简介:SomecharacterizationsoftheconditionalexpectationoperatorsonLebesgue-BochnerspacesL_p(μ,X)aregiven,where1≤p<∞,p≠2.AlsoanexampleisgiventoshowthatthecharacterizationsoftheconditionalexpectationoperatorsonL_p(μ,X)aredifferentfromthatonL_p(μ)_zFinally,arepresentationoftheconstant-preservingcontractiveprojectiononspacesL_p(μ,X)isgotwhen0<p<1.
简介:<正>LetD={z∈:|z|<1}andφbeanormalfunctionon[0,1).Forp∈(0,1)suchafunctionφisusedtodefineaBergmanspaceA~p(φ)onDwithweightφ~p(|·|)/(1-|·|~2).Inthispaper,thedualspaceofA~p(φ)isgiven,fourcharacteristicsofCarlesonmeasureonA~p(φ)areobtained.Moreover,asanapplication,threesequenceinterpolationtheoremsinA~p(φ)arederived.
简介:Letp(z)=beapolynomialdegreenandletThenaccord-ingtoBernstein’sinequality||p’||
简介:Thepurposeofthepresentpaperistoevaluatetheerroroftheapproximationofthefunc-tionfL1[0,1]byKantorovich-BernsteinpolynomialsinLp-metric(0<p<1).
简介:InthispaperwestudytheconvergencenfaclassofmeansonHp(G)(0<p<1),themeanstaketheBochner-Rieszmeansin[1],thegeneralizedBochner-Rieszmeansin[2],andtheoperatorsTΦrin[3]asspecialcases.Weobtainweak-typeestimatesfortheassociatedmaximaloperatorsandthemaximalmeanboundednessforthemeans.
简介:Therearetwopartsinthispaper.InthefirstpartweconstructtheMarkovchaininrandomenvironment(MCRE),theskewproductMarkovchainandp-θ~→chainfromarandomtransitionmatrixandatwo-dimensionalprobabilitydistribution,andinthesecondpartweprovethattheinvarianceprincipleforp-θ→chain,amorecomplexnon-homogeneousMarkovchain,istrueundersomereasonableconditions.Thisresultismorepowerful.
简介:ThepresentpaperdealswithfindingofconstantoccurringintheorderofapproximationofthefunctionofLipα(O<α<1)classbyusing(N,p)operator.Obviouslythefactor1/(1-α)becomeslargewhenαiscloseto1.Wehaveshowntheroleofthisfactorintheconstantofapproximation.
简介:WeuseMnforthesetofalln×nrealmatrices;(n)for{1,…,n};Snforthesymmetricgroupon〈n〉;A[α]α∈
简介:Inthispaper,theLp-convergenceofGrünwaldinterpolationGn(f,x)basedonthezerosofJacobipolynomialsJ(α,β)n(x)(-1<α,β<1)isconsidered.Lp-convergence(0<p<2)ofGrünwaldinterpolationGn(f,x)isprovedforp·Max(α,β)<1.Moreover,Lp-convergence(p>0)ofGn(f,x)isobtainedfor-1<α,β≤0.Therefore,theresultsof[1]and[3-5]areimproved.
简介:Inthispaper,weintroduceaconditionweakerthantheLpdifferentiability,whichwecallCpcondition.Weprovethatifafunctionsatisfiesthisconditionatapoint,thenthereexiststhebestlocalapproximationatthatpoint.WealsogiveanecessaryandsufficientconditionforthatafunctionbeLpdifferentiable.Inaddition,westudytheconvexityofthesetofclusterpointsofthenetofbestappoximationsoff,{Pe(f)}ase→0.