学科分类
/ 1
13 个结果
  • 简介:设H是一实Hillber空间,K是H之一非空间凸子集,设(Ti)i=1^N是N个Lipschitz伪压缩映象使得F=∩i=1^NF(Ti)≠Ф,其中F(Ti)={x∈K:Tix=x}并且{αn}n=1∞,{βn}n=1^∞包含[O,1]是满足如下条件的实序列(i)∑n=1^∞(1-αn)^2=+∞;(ii)limn→∞(1-αn)=0;(iii)∑n=1^∞(1-βn)〈+∞;(iv)(1-αn)L^2〈1,arbitaryn≥1;(v)αn(1-βn)^2+αm[βn+L(1-βn)-]^2〈1,其中L≥1是{Ti}i=1^N的公共Lipschitz常数,对于x0∈K,设{xn}n=1^∞是由下列定义的复合隐格式迭代xN=αnxn-1+(1-αn)Tnyn,yn=βnxn+(1-βn)Tnxn,其中Tn=TnmodN,则(i)limn→∞||xn-p||存在,对于所有的p∈F;(ii)limn→∞d(xn,F)存在,其中d(xn,F)=infp∈F||xn-p||;(iii)limn→∞inf||xn-Tnxn||=0.本文的结果推广并且改进H—K.Xu和R.G.Ori在2001年的结果和Osilike在2004年的结果,并且在这篇文章中,主要的证明方法也不同与H—K.Xu和Osilike的方法.

  • 标签: 伪压缩映射 复合隐格式迭代 公共不动点
  • 简介:本文给出了数值求解一类偏积分微分方程的二阶全离散差分格式.采用了Crank-Nicolson格式;积分项的离散利用了Lubieh的二阶卷积积分公式;给出了稳定性的证明,误差估计及收敛性的结果.

  • 标签: 二阶 积分微分方程 全离散 阶差 收敛性 误差估计
  • 简介:利用连续有限元法得到了二维线性哈密尔顿系统一次元和二次元的计算格式,并证明了它们都是辛格式.系统的内在特征在离散后能保持.本文的数值例子也证实了这些结论.

  • 标签: 哈密尔顿系统 有限元法 辛格式 线性 二维 计算格式
  • 简介:利用特征投影分解(POD)方法建立二维双曲型方程的一种基于POD方法的含有很少自由度但具有足够高精度的降阶宦限差分外推迭代格式。给出其基于POD降阶有限差分解的误差估计及基于POD降阶有限差分外推迭代格式的算法实现。用一个数值例子去说明数值计算结果与理论结果相吻合。进一步说明这种基于POD降阶有限差分外推迭代格式对于求解二维双曲方程是可行和有效的。

  • 标签: 特征投影分解 降阶有限差分外推迭代格式 双曲方程
  • 简介:我国自古是诗的国度,诗歌是人类情感的结晶。古今人们用诗词记事、酬和,用笔端讴歌祖国的大好河山、抒发自己的激情、陶冶情操。以诗言志、言情、助兴、消愁、消遣,甚至以诗治病。据1992年的《新民晚报》载:意大利的“诗药有限公司”竟有三四家。在一些书店或药店可买到与普通药品设计一样的药盒,上标“主治××病”,内装治此病的诗歌。.孔子日“诗可以怨”。揭示不平,发泄怨气,献诗飒谏,是古老《诗经》留下的传统。可以说,诗歌词赋是“炸弹和力量”。但有些古诗怨气多,少了鼓舞人的力量,读时应注意。

  • 标签: 诗词 《诗经》 意大利 诗歌 古诗
  • 简介:当我们从小学启蒙开始,一学数学便和数字打起了交道。现在进入中学,学习代数,还要接触许多新的数学符号。这些数字和符号结构十分合理,用起来十分方便,就像天生的一样。其实,数字和数学符号,是人类文明的一部分,那是人类祖先自己创造的。在学习初中数学之前,大体...

  • 标签: 代数符号 阿拉伯数字系统 印度 符号代数 数字符号 零的记号
  • 简介:用辛几何的观点得到了四阶杆振动方程的一族十字架辛格式,对于四阶杆振动方程的稳定条件不一定随时间方向的精度的提高而放宽,而随空间方向精度的提高稳定范围缩小.数值例子表明单辛算法具有良好的数值稳定性.

  • 标签: 四阶杆振动方程 HAMILTON系统 辛格式 稳定条件
  • 简介:本文将文献中的求解二维的有交界面的椭圆型方程的浸入界面方法推广到界面及间断条件都由定义在界面某个邻域的网格函数点上的函数隐式提供的情形,给出了一种间断条件捕捉格式。它特别适合干隐式界面跟踪法如水平集方法。对原浸入界面方法中的界面间断关系,确定不规则点差分格式的系数的代数方程组和修正项都针对新的情形进行了相应的修正。该格式利用标准的二阶拉格朗日插值计算间断函数沿界面的导数,避免了文献中的用样条函数的局部界面重构,易于执行。数值计算验证了该法的关于最大模的二阶收敛性。

  • 标签: 有交界面的椭圆型方程 浸入界面方法 水平集函数 差分方法 拉格朗日插值
  • 简介:<正>数字谜是逻辑推理中常见的一种竞赛题型。它以其独特的趣味性和严密的逻辑性成为一种风靡国内外的智力测试题,它涉及的知识不深主要是整数四则运算规律和严密的推理,而进位规律,尾数规律,整除性的规律往往在解题中起到“突破口”作用。常解这类题能培养观察能力,分析能力和逻辑思维能力。解答数字谜一般遵循以下思路:(1)分析已知条件、读懂题目、理解题意、善于观察,分析。告诉什么,要求什么,这是解

  • 标签: 数字 突破口 竖式 勤动脑 整除性 汉字
  • 简介:随着计算机技术、网络技术的普及,利用先进的计算机技术、多媒体技术、网络技术,实现校园网络化、资源数字化、管理科学化,即教育信息化,已成为高等学校改革的重点.数字化教学资源建设是实现教学手段和教学方法改革的关键,是实现教育信息化的基础.大学数学数字化教学资源在高等学校数学课程建设和教学中正发挥着越来越大的作用.

  • 标签: 教学资源建设 大学数学 数字化 计算机技术 教育信息化 教学方法改革