简介:Severalquadrilateralshaperegularmeshconditionscommonlyusedinthefiniteelementmethodareproventobeequivalent.Theirinfluenceonthefiniteelementinterpolationerrorandtheconsistencyerrorcommittedbynonconformingfiniteelementsareinvestigated.TheeffectoftheBi-SectionConditionanditsextendedversion(1+α)-SectionConditiononthedegeneratemeshconditionsisalsochecked.ThenecessityoftheBi-SectionConditioninfiniteelementsisunderpinnedbymeansofcounterexamples.
简介:不同液体的混乱混合生产旋绕的结构到分开这些液体的接口。为能溶合的液体(是这里考虑了),这个接口被定义为50%集体集中isosurface。为导致的冲击波(Richtmyer-Meshkov)不稳定性,我们发现接口当计算网孔被精制,逐渐地复杂。如果Kolmogorov规模相对网孔是小的,这界面的混乱被粘性,或由计算网孔割掉。在集成的接口统计的政体,我们然后检验混合,即集中统计,由质量调整了散开。为比统一显著地大的Schmidt数字,典型地代表液体或稠密的血浆,另外的网孔精炼通常被需要克服数字集体散开并且完成混合问题的一个集成的答案。然而,与前面追踪的利益并且与一个算法,那允许有限接口散开,我们能在Schmidt数字一致地保证集中。我们证明不同答案源于Schmidt数字的变化。我们建议潜水艇格子粘性和可能在现实主义的格子层次允许集成的答案的集体散开parameterizations。
简介:Solution-drivenmeshadaptationisbecomingquitepopularforspatialerrorcontrolinthenumericalsimulationofcomplexcomputationalphysicsapplications,suchasclimatemodeling.Typically,spatialadaptationisachievedbyelementsubdivision(hadaptation)withaprimarygoalofresolvingthelocallengthscalesofinterest.Asec-ond,less-popularmethodofspatialadaptivityiscalled'meshmotion'(radaptation);thesmoothrepositioningofmeshnodepointsaimedatresizingexistingelementstocapturethelocallengthscales.Thispaperproposesanadaptationmethodbasedonacombinationofbothelementsubdivisionandnodepointrepositioning(rhadaptation).Bycombiningthesetwomethodsusingthenotionofamobilityfunction,theproposedapproachseekstoincreasetheflexibilityandextensibilityofmeshmotionalgorithmswhileprovidingasomewhatsmoothertransitionbetweenrefinedregionsthanispro-ducedbyelementsubdivisionalone.Further,inanattempttosupporttherequirementsofaverygeneralclassofclimatesimulationapplications,theproposedmethodisde-signedtoaccommodateunstructured,polygonalmeshtopologiesinadditiontothemostpopularmeshtypes.
简介:AnewapproachfortreatingthemeshwithLagrangianschemeoffinitevolumemethodispresented.IthasbeenprovedthatclassicalLagrangianmethodisdifficulttocopewithlargedeformationintrackingmaterialparticlesduetoseveredistortionofcells,andthechangingconnectivityofthemeshseemsespeciallyattractiveforsolvingsuchissues.Themeshwithlargedeformationbasedoncomputationalgeometryisoptimizedbyusingnewmethod.Thispaperdevelopsaprocessingsystemforarbitrarypolygonalunstructuredgrid,theintelligentvariablegridneighborhoodtechnologiesisutilizedtoimprovethequalityofmeshincalculationprocess,andarbitrarypolygonalmeshisusedintheLagrangianfinitevolumescheme.Theperformanceofthenewmethodisdemonstratedthroughseriesofnumericalexamples,andthesimulationcapabilityisefficientlypresentedincopingwiththesystemswithlargedeformations.