简介:LetX,i.i.d.andY1i.i.d.betwosequencesofrandomvariableswithunknowndistributionfunctionsF(x)andG(y)respectively.X,arecensoredbyY1.InthispaperwestudytheuniformconsistencyoftheKaplan-Meierestimatorunderthecaseey=sup(t:F(t)<1)>to=sup(t2G(t)<1)Thesufficientconditionisdiscussed.
简介:InInternetenvironment,trafficflowtoalinkistypicallymodeledbysuperpositionofON/OFFbasedsources.DuringeachON-periodforaparticularsource,packetsarriveaccordingtoaPoissonprocessandpacketsizes(henceservicetimes)canbegenerallydistributed.Inthispaper,weestablishheavytrafficlimittheoremstoprovidesuitableapproximationsforthesystemunderfirst-infirst-out(FIFO)andwork-conservingservicediscipline,whichstatethat,whenthelengthsofbothON-andOFF-periodsarelightlytailed,thesequencesofthescaledqueuelengthandworkloadprocessesconvergeweaklytoshort-rangedependentreflectingGaussianprocesses,andwhenthelengthsofON-and/orOFF-periodsareheavilytailedwithinfinitevariance,thesequencesconvergeweaklytoeitherreflectingfractionalBrownianmotions(FBMs)orcertaintypeoflongrangedependentreflectingGaussianprocessesdependingonthechoiceofscalingasthenumberofsuperposedsourcestendstoinfinity.Moreover,thesequencesexhibitastatespacecollapse-likepropertywhenthenumberofsourcesislargeenough,whichisakindofextensionofthewell-knownLittle’slawforM/M/1queueingsystem.Theorytojustifytheapproximationsisbasedonappropriateheavytrafficconditionswhichessentiallymeanthattheserviceratecloselyapproachesthearrivalratewhenthenumberofinputsourcestendstoinfinity.