简介:建筑市场是一个由复杂社会网络关系构成的系统,企业的竞争力和其在网络结构中的位置和把握网络机会的能力相关。论文从项目合作视角出发,通过建立建筑业企业社会网络模型,并利用区域性案例进行实证。结果发现建筑业不同类型的企业在网络中的位置具有显著不同,服从幂律分布,但本地国有企业占有明显优势,存在市场开放度和竞争不足问题;进一步的,论文通过实证得出了企业市场竞争力受中心度和结构洞中的限制度指标的双重影响,且两个因素之间存在幂律关系。论文的实证结论证明,在不完全竞争条件下,企业要提高自身在建筑市场的竞争力,必须尽可能利用地缘社会关系和政府资源关系,创造和利用网络结构洞,巩固自身在网络中的位置,尽力提高网络个体中心度。
简介:采购管理是企业经营活动的一个重要组成部分,更加有效的采购管理策略可以大大减少采购费用,对于企业的经营业绩非常重要。在现实的经济活动中交易费用和持有成本在企业管理费用中占很大一部分比率,而采购过程影响着交易费用和持有成本。所以在前人研究的基础上,将交易费用和持有成本引入到局内采购管理模型中,使得运用该策略无论以后采购价格如何变化,局内人的采购成本总是对应局外问题最优采购成本的一定比例c之内,并得到c与原模型相同。但是引入交易费用和持有成本后每天的采购量将发生变化,原模型是在不考虑交易费用和持有成本的前提下得得到的每天采购量和最优竞争比,如果考虑到现实经济活动中不可忽略的交易费用和持有成本,仍然按照原模型来确定每天的采购量来采购就不能得到最优竞争比c。所以本文考虑到了交易费用和持有成本,并得到和原模型不同的每天采购量,并求出最优竞争比c。
简介:在产品不完全覆盖市场中,研究具有不对称网络外部性的纵向差异化产品的Bertrand价格竞争或Cournot数量竞争策略。研究表明,两产品在Cournot数量竞争中的市场利润和社会福利都大于在Bertrand价格竞争中的市场利润和社会福利。在Bertrand价格竞争或Cournot数量竞争中,当低质量产品的网络外部性较大且满足一定条件时,低质量产品也可以获得较大的市场利润;当高质量产品具有较大网络外部性,或网络外部性虽然较小但满足一定条件条件,网络外部性相等或产品都不具有网络外部性时,高质量产品获得较大的市场利润。随着网络外部性的增强,Cournot-Nash均衡点并不稳定,在重复博弈以后,均衡点向Bertrand-Nash均衡点靠近。
简介:自然资源是现代工业文明的物质基础,资源型企业构建生态产业链的发展理念已经成为众多学者的共识。当前的多数研究都假定已探明的资源储量是固定不变的,这与实际情况并不相符。本文根据当前国内矿产资源的勘探开发的现实状况,假定自然资源潜在储量还有增长的空间,利用微分方程建立资源、上下游企业之间的相互关系模型,探讨了系统非零平衡态时三者的密度影响因素,随后在设定了相应的参数前提下,利用数学软件对模型进行了数值模拟,发现资源、上下游企业之间是紧密联系的,也是互相制约的。本研究旨在通过自然科学及矿业经济管理学的有效结合,为资源型区域的地方政府和企业界人士提供一个观察现象和思考解决问题的视角。
简介:新产品的市场接纳具有很大不确定性,传统投资理论并不适用于新产品投资。针对新产品投资中的产能投资,研究了垄断企业和有成本差异的竞争企业制定短周期新产品的产能投资时机与规模策略。给定企业“早”和“晚”两个投资时机可供选择,定义“早”投资时,企业只知道新产品市场规模的期望和方差;“晚”投资时,企业知道新产品真实的市场规模。垄断企业进入市场之前无法进行销售信息的收集,只会选择“早”投资或者不投资,给出其选择“早”投资的条件、最优产能投资规模及最大期望利润。有成本差异企业竞争的情形可以分为四种,分别给出四种情形下的最优产能投资规模及最大期望利润,并通过比较各情形下两企业的最大期望利润给出最优的产能投资时机策略。
简介:为解决一次性n人囚徒困境中局中人如何走出困境的问题,引进了背叛惩罚函数及其严厉度和参与人的背叛愿意度等概念,并用数学论证法证明了如下结果:(1)参与人的背叛愿意度都不超过1。(2)背叛愿意度越大,这个参与人越愿意背叛;(3)背叛愿意度为0零时,这个参与人是否背叛其赢得一样;(4)当背叛愿意度取负数时,其绝对值越大,参与人的合作积极性越大。得到博弈结果的判定法:(1)计算各参与人的背叛愿意度。(2)若至少有一个参与人愿意背叛,则全体参与人都背叛。(3)若全体参与人都愿意合作,则合作成功。例子表明,本结果在理论上可有效地解决中局中人如何走出困境和在给定惩罚机制下博弈结果的预测问题。
简介:参考文献中对Lemke-Howson算法给出了相似于线性规划中的单纯形解法。本文用例指出了该解法中出现循环的情况,导致有解求不出。
简介:设P(G,λ)是图的色多项式。如果对任意使P(G,λ)=P(H,λ)的图H都与G同构.则称图G是色唯一图.这里通过比较t+1色类的色划分数目,讨论了由Koh和Teo在文献[1]中提出的问题(若│ni-nj│≤2.当min(n1,n2,…,nt)充分大时,完全t部图K(n1,n2,…,nt)是否是色唯一图?)。改进了文献[5]中的结果。证明了若∑1≤i≤tai^2=T.min{n+a1,n+a2,….nt+at,n-1}≥(T+1)/2,则K(n+a1.n+a2,….n+a,)是色唯一图(其中ai是实数,n+ai是正整数)。从而证明了若│ni-nj│≤k(i.j=1,2.…,t).min{n1.n2,…,nt}≥tk^2/8+1.则K(n1,n2,…nt)是色唯一图。