学科分类
/ 1
14 个结果
  • 简介:通过分析1和2线性插值可以推导出任意斜角直线坐标系下n线性插值的一般计算公式以及有唯一解的条件,这一结论能够应用于三温度场计算。可以将n插值问题归结如下:已知n+1空间中的n+1个点的坐标以及第n+2个点的n个坐标分量xn+2,1,xn+2,2,,xn+2,n,求解该点的第n+1个坐标分量xn+2,n+1。根据线性插值定义,第n+2个点位于前n+1个点所确定的n超平面上。根据这一条件列写方程、求解方程可得到插值xn+2,n+1。n插值问题有唯一解的条件是已知的n+1个点在n维空间中构成的多面体的体积不为0。推导过程在斜角直线坐标系中完成,因而结论具有较大普适性。

  • 标签: 线性插值 空间 高维 斜角直线坐标 温度场
  • 简介:提出了一种陀螺仪自由转子偏角信号读取的方法,这种方法基于对反射光斑的四象限分割.与其它光电式读取方案相比,该方法减少了所需传感器的数量,通过一个极轴传感器就可以得到转子自转轴的偏角大小及方位信号,从而可以简化陀螺的结构,提高陀螺的可靠性.

  • 标签: 陀螺仪 自由转子 偏角信号 四象限法 信号读取 光电传感器
  • 简介:随着导航的应用场景日趋复杂,对利用室内地图的全局路径规划提出更高的要求。为提高全局路径规划算法效率,提出一种指示路径规划算法。首先运用栅格对已知地图进行建模,然后在算法中引入方向向量引导路径方向,接着多次执行并通过奖励与惩罚措施来将关联矩阵与路径质量形成正反馈机制,并采用路径优化策略,最终得到一条较好质量的结果路径。仿真结果表明,较A*算法而言,指示路径规划算法在时间上减少49%,并且在较复杂的栅格地图中,其路径长度缩短了17%。

  • 标签: 路径规划 栅格法 全局路径规划 指示路径规划算法
  • 简介:在Mach数3.4的来流条件下,对二后台阶流动精细结构开展了实验研究.实验分为后台阶上游无控制加粗糙带扰动及微涡流发生器(micro-vortexgenerator,MVG)扰动3种状态,采用基于纳米示踪的平面激光散射(nano-tracerbasedplanarlaserscattering,NPLS)方法获得了流向和展向切面内的高时空分辨率流动显示图像,并测量了模型表面静压分布.对大量NPLS图像取平均,研究了流场结构的时间平均规律,对比不同时刻的瞬态流场精细结构图像,发现不同状态下的湍流大尺度结构的特征时间.有粗糙带状态相对无粗糙带台阶下游回流区压力更低,而下游压力较高,台阶上游区别不大;受MVG控制后台阶下游附近区域压力突增;MVG对流动的控制改变能力较强,粗糙带能调整台阶上下游附近流动平稳过渡,流场壁面压力没有突变.

  • 标签: 超声速 流动显示 流场精细结构 后台阶 流动控制
  • 简介:通过数值模拟研究了高超声速来流绕过压缩拐角的层流分离三流动特性.数值方法采用三N-S方程,结合2阶精度Roe格式以及分区结构网格有限体积进行离散.数值模拟的空间激波结构与实验纹影结果符合较好;激波/边界层干扰区内3条纵向线上的计算压力分布与实验结果进行了对比分析,计算获得在三楔侧面存在低压力区,与实验结果反映的规律一致,计算结果表明低压力区是由楔体侧缘尖端发起的二次涡的抽吸作用造成的.此外,在楔体后端尾流区的低压沿边界层内的亚声速区往上游传递了一定距离.

  • 标签: 激波/边界层干扰 层流分离 压缩拐角 高超声速层流 三维效应
  • 简介:为提高空间稳定惯性导航系统的姿态精度,利用姿态误差进行系统级参数标定和校准。首先,给出了姿态误差模型,考虑陀螺漂移、加速度计误差、壳体翻滚失准角、安装误差和框架角零偏的影响;接着,利用姿态误差模型进行可辨识性讨论和分析,总结出能分离的参数和标定方法,并据此设计试验方案。获得姿态误差后,结合最小二乘法和姿态误差模型进行系统级参数标定和校准,结果表明,参数标定误差小于15%的姿态精度指标,校准后,纵横摇角和航向角精度提高了60%和40%。

  • 标签: 姿态 误差分析 参数标校 惯性导航系统
  • 简介:准确地给出激波位置信息对于激波装配极为重要.但是,在使用计算流体力学(computationalfluiddynamics,CFD)方法模拟复杂流动时很难准确地给出激波的位置.根据激波捕捉得到的流场信息确定的激波位置往往带有极大误差,在定常问题的模拟中,这种误差可以随着迭代逐渐消除,然而在非定常问题的模拟中,这种误差往往会积累甚至导致计算崩溃.文章将基于特征线理论的激波辨识技术应用到激波装配中,根据已有流场信息准确判断激波的位置.对于定常问题,该方法的应用加速了收敛速度;对于非定常问题,该方法的应用可以极大地避免初始误差的产生.

  • 标签: 激波装配 激波辨识 非结构动网格 计算流体力学
  • 简介:谐振子弹性系数和阻尼系数的不对称是引起半球谐振陀螺漂移的主要原因。根据半球谐振陀螺的动力学模型,用轨迹图对谐振子的振动特性进行了研究。轨迹图直观地反映了谐振子的振动特性。当谐振子处于理想状态并且有角速率输入时,谐振子的轨迹图是以一定的角速率进动的标准椭圆。谐振子的非理想性严重影响陀螺的正常工作。当谐振子弹性系数不对称时,谐振子的轨迹图会发生明显变形。阻尼系数的不对称会导致振动平面向最低阻尼轴漂移。因此,消除弹性系数和阻尼系数不对称的影响对提高半球谐振陀螺的精度有重要意义。

  • 标签: 半球谐振陀螺 谐振子 动力学模型 轨迹
  • 简介:在不同工况下,旋转爆震波能够以单波、双波、多波模式进行传播.但在同一工况下,是否存在不同模式的稳定传播爆震波还有待进一步研究.基于Euler方程,耦合氢气/空气的有限化学反应速率模型,并采用高分辨率的5阶有限差分格式WENO-PPM5离散对流项,对三旋转爆震波进行了数值模拟.计算结果表明,在同一特定工况下,旋转爆震波能够以两种不同的传播模式稳定传播,即单波模式和双波模式.详细地对比了两种传播模式下的流场特征、爆震波传播特性、推力性能等.在同一工况下,两种传播模式的爆震波周向传播速度相差不多,但双波模式的频率约为单波模式的2倍;双波模式下质量流量、比冲、推力的平均值均略高于单波模式;且双波模式的可燃混气层高度约为单波模式的1/2,这有助于缩小旋转爆震发动机的长度,使之更加紧凑.

  • 标签: 旋转爆震 点火条件 传播模式 传播特性 推力性能
  • 简介:文章考察了相邻双侧边盖驱动方腔流动(即上壁面向右运动和左侧壁面向下运动)的三线性整体稳定性.首先,采用Taylor—Hood有限元方法并经由Newton迭代过程计算得到双侧边盖驱动方腔流动的二稳态基本流.其次,Taylor—Hood有限元在ChebyshevGauss配置点上进行离散,同时Gauss配置点也可以用于线性稳定性方程的高阶有限差分格式离散.然后,离散得到的矩阵形式的广义特征值问题可以结合shift-and—invert算法采用隐式重启Amoldi方法计算.最后,通过对线性稳定性方程特征值的计算,发现了一个最不稳定的驻定模态和两对对称行波模态.最不稳定的三驻定模态的临界Reynolds数为Ree=261.5,远远小于二不稳定的临界Revnolds数Ree2d=1061.7.通过画出这3类三不稳定模态的流向扰动速度和扰动涡量的空间等值面图像,可以发现不稳定扰动位于稳态基本流的两个主涡区域,因此可以认为主涡区域是三扰动失稳的主要能量来源地.

  • 标签: 边盖驱动方腔流动 整体稳定性 临界Reynolds数 行波模态 Taylor—Hood有限元
  • 简介:传统地形辅助导航适配区选择主要根据某一个地形特征参数的大小决定,因此不可避免地存在对地形适配性评判的不全面性。为了克服传统方法的缺点,提出了一种基于熵值赋权灰色关联决策的地形辅助导航适配区选择方法,该方法综合考虑了地形标准差、粗糙度、地形高度熵及相关系数对适配区选择的影响。首先,利用计算得到的各特征参数值构建灰色决策矩阵;其次,对决策矩阵进行极差变换以及归一化处理得到灰色关联判断矩阵;最后,采用熵值赋权客观计算各决策属性的权重,得到地形适配性综合评价指标。仿真结果表明,在评价值高的区域进行地形辅助导航,其匹配误差将更小。

  • 标签: 地形辅助导航 地形信息量 适配区 熵值法赋权 灰色关联决策
  • 简介:运用刚度等效理论,推导出了音叉式陀螺仪敏感模态谐振频率的计算公式,并借助有限元分析软件验证该公式的正确性,最后分析了几何参数对谐振频率的影响.

  • 标签: 音叉 推导 谐振频率 计算公式 模态 陀螺仪
  • 简介:本文探讨了三轴转台机械系统的设计与计算问题,以惯性三轴测试转台和三轴模拟台为例,确定了多种运转状态下的有限元计算模型,并对其进行了静、动态特性计算,比较分析了计算结果,为合理结构的设计提供了重要数据,说明了在三轴转台机械系统设计中有限元的重要性

  • 标签: 三轴转台静、动态特性 有限元
  • 简介:基于微喷三打印机制造压力传感器,用于可穿戴的个人导航系统中。在基底表面不规则或者使用中经常被折弯的情况下,微喷打印工艺制备的MEMS器件精度更高,性能更好。研究了器件的可打印模型和工艺,给出压力传感器可打印的分层物理结构;研究了平面结构投影到三基底上的投影空间,基于Terzopoulos弹性模型使用材料弹性度和结构弹性度模型给出投影空间;使用射线投影NURBS曲线来拟合边界轮廓,给出分层切片模型。为验证打印PZT膜的压电性能以及设计的压力传感器件的功能,使用不同的机械负荷测试其刚度,使用不同的直流偏置来测试耗损因数、品质因数等。通过比较实验对象的测量值和理论预测值之间的关系可以看出,打印的压力传感器薄膜具有很好的机械和电气性能。

  • 标签: 三维打印机 微机电系统制造 定点制备 弹性模型 个人导航系统