简介:在飞行器的气动外形优化设计中,参数化方法和优化算法具有十分重要的作用,对优化的计算时间、设计空间的数学特性有着深刻的影响.类别形状函数(classandshapetransformation,CST)方法是一种简洁高效的参数化方法,但对于复杂曲面很难使用统一的CST方法进行拟合.文章首先介绍了CST方法的三维实现,分析了其数学性质,提出了分块CST参数化方法,保留CST方法的特性,实现了分块曲面之间的光滑连接.针对气动外形优化设计的复杂情况,需要根据具体的飞行任务提出设计目标,并处理不同目标的矛盾问题.其次采用Pareto策略自动寻找最优方案集,并基于分块CST参数化方法、遗传算法和气动力快速计算方法,对类乘波翼身组合飞行器进行了优化设计,并改变原有问题的设定条件优化得到了全新外形.研究结果表明分块CST方法参数少,精度高,Pareto策略处理多目标准确有效,是气动外形优化设计中非常有用的工具.
简介:针对1点RANSAC(RandomSampleConsensus)单目视觉EKF(ExtendedKalmanFilter)算法中的滤波发散问题,分析了滤波发散的产生原因,提出了一种基于渐消记忆滤波的1点RANSAC单目视觉姿态估计算法。该算法通过在EKF滤波方程中引入加权因子,逐渐加大当前数据的权重,相应地减少旧数据的权重,有效地扼制了算法中的滤波发散问题。最后通过两组验证性实验验证说明了算法的有效性。实验结果表明:该算法能够有效地解决1点RANSAC单目视觉EKF算法中的滤波发散问题,具有更高的精度。第一组双轴联动实验,航向角的平均误差减小2.4158?,俯仰角平均误差减小0.1782?;第二组偏航轴大角度转动实验,摄像机航向角的估计误差一直保持在1.5?以内。